В какой реакции сероводород не проявляет восстановительные свойства

СЕРОВОДОРОД
Физические свойства
Газ, бесцветный, с запахом тухлых яиц, ядовит,
растворим в воде (в 1V
H2O растворяется 3V H2S при н.у.); t°пл. = -86°C; t°кип. = -60°С.
Влияние сероводорода на организм:
Сероводород не толькоскверно
пахнет, он еще и чрезвычайно ядовит. При вдыхании этого газа в большом
количестве быстро наступает паралич дыхательных нервов, и тогда человек
перестает ощущать запах – в этом и заключается смертельная опасность
сероводорода.
Насчитывается
множество случаев отравления вредным газом, когда пострадавшими были
рабочие, на ремонте трубопроводов. Этот газ тяжелее, поэтому он
накапливается в ямах, колодцах, откуда быстро выбраться не так-то
просто.
Получение
1)
H2
+ S
→ H2S↑ (при t)
2)
FeS
+ 2HCl
→ FeCl2
+ H2S↑
Химические свойства
1) Раствор H2S в воде – слабая двухосновная кислота.
Диссоциация происходит в две ступени:
H2S → H+
+ HS-
(первая ступень, образуется гидросульфид — ион)
HS- → 2H+ + S2-
(вторая ступень)
Сероводородная
кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды):
Na2S – сульфид натрия;
CaS
– сульфид кальция;
NaHS
– гидросульфид натрия;
Ca(HS)2 – гидросульфид
кальция.
2)
Взаимодействует с основаниями:
H2S + 2NaOH(избыток) → Na2S + 2H2O
H2S (избыток) + NaOH → NaНS + H2O
3) H2S проявляет очень сильные
восстановительные свойства:
H2S-2
+ Br2 → S0 + 2HBr
H2S-2
+ 2FeCl3 → 2FeCl2 + S0 + 2HCl
H2S-2
+ 4Cl2 + 4H2O →
H2S+6O4 + 8HCl
3H2S-2
+ 8HNO3(конц) → 3H2S+6O4
+ 8NO + 4H2O
H2S-2
+ H2S+6O4(конц) → S0 + S+4O2 +
2H2O
(при нагревании реакция идет по — иному:
H2S-2 + 3H2S+6O4(конц)
→ 4S+4O2 + 4H2O
4) Сероводород
окисляется:
при
недостатке O2
2H2S-2 +
O2
→ 2S0
+
2H2O
при избытке O2
2H2S-2
+ 3O2 → 2S+4O2 + 2H2O
5) Серебро при контакте с сероводородом
чернеет:
4Ag
+ 2H2S + O2
→ 2Ag2S↓ + 2H2O
Потемневшим
предметам можно вернуть блеск. Для этого в эмалированной посуде их кипятят с
раствором соды и алюминиевой фольгой. Алюминий восстанавливает серебро до
металла, а раствор соды удерживает ионы серы.
6) Качественная реакция на сероводород и
растворимые сульфиды — образование темно-коричневого (почти черного) осадка PbS:
H2S +
Pb(NO3)2 → PbS↓ + 2HNO3
Na2S
+ Pb(NO3)2 → PbS↓ + 2NaNO3
Pb2+
+
S2-
→
PbS↓
Загрязнение атмосферы вызывает почернение
поверхности картин, написанных масляными красками, в состав которых входят
свинцовые белила. Одной
из основных причин потемнения художественных картин старых мастеров было
использование свинцовых белил, которые за несколько веков, взаимодействуя со
следами сероводорода в воздухе (образуются в небольших количествах при гниении
белков; в атмосфере промышленных регионов и др.) превращаются в PbS. Свинцовые белила – это пигмент, представляющий
собой карбонат свинца (II).
Он реагирует с сероводородом, содержащимся в загрязнённой атмосфере, образуя
сульфид свинца (II),
соединение чёрного цвета:
PbCO3 + H2S = PbS↓ + CO2 + H2O
При обработке сульфида свинца (II) пероксидом водорода происходит реакция:
PbS +
4H2O2 = PbSO4 + 4H2O,
при этом образуется сульфат свинца (II), соединение белого цвета.
Таким образом реставрируют почерневшие
масляные картины.
7) Реставрация:
PbS
+ 4H2O2
→ PbSO4(белый)
+ 4H2O
Сульфиды
Получение сульфидов
1) Многие сульфиды получают нагреванием
металла с серой:
Hg
+ S
→
HgS
2) Растворимые
сульфиды получают действием сероводорода на щелочи:
H2S + 2KOH →
K2S + 2H2O
3) Нерастворимые
сульфиды получают обменными реакциями:
CdCl2
+ Na2S → 2NaCl + CdS↓
Pb(NO3)2
+ Na2S → 2NaNO3 + PbS↓
ZnSO4
+ Na2S → Na2SO4 + ZnS↓
MnSO4
+ Na2S → Na2SO4 + MnS↓
2SbCl3
+ 3Na2S → 6NaCl + Sb2S3↓
SnCl2
+ Na2S → 2NaCl + SnS↓
Химические свойства сульфидов
1) Растворимые
сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют
щелочную реакцию:
K2S +
H2O → KHS + KOH
S2- +
H2O → HS- + OH-
2) Сульфиды
металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в
сильных кислотах:
ZnS + H2SO4
→ ZnSO4 + H2S
3)
Нерастворимые сульфиды можно перевести в растворимое состояние действием
концентрированной HNO3:
FeS2
+ 8HNO3 → Fe(NO3)3 + 2H2SO4
+ 5NO + 2H2O
ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ
Задание №1
Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Cu →CuS →H2S →SO2
Задание №2
Составьте
уравнения окислительно-восстановительных реакций полного и неполного
сгорания сероводорода. Расставьте коэффициенты методом электронного
баланса, укажите окислитель и восстановитель для каждой реакции, а так
же процессы окисления и восстановления.
Задание №3
Запишите
уравнение химической реакции сероводорода с раствором нитрата свинца
(II) в молекулярном, полном и кратком ионном виде. Отметьте признаки
этой реакции, является ли реакция обратимой?
Задание №4
Сероводород пропустили через 18%-ый раствор сульфата меди (II) массой
200 г. Вычислите массу осадка, выпавшего в результате этой реакции.
Задание №5
Определите объём сероводорода (н.у.), образовавшегося при взаимодействии
соляной кислоты с 25% — ым раствором сульфида железа (II) массой 2 кг?
Сероводород (H₂S) представляет собой бесцветный газ c запахом тухлых яиц. По плотности он тяжелее водорода. Сероводород смертельно ядовит для человека и животных. Даже незначительное его содержание в воздухе вызывает головокружение и тошноту, но самым страшным является то, что при длительном его вдыхании этот запах уже не ощущается.
Однако при отравлении сероводородом существует простое противоядие: следует завернуть в платок кусок хлорной извести, затем смочить, и какое-то время нюхать этот сверток.
Сероводород получают путем взаимодействия серы с водородом при температуре 350 °С:
H₂ + S → H₂S↑
Это окислительно-восстановительная реакция: в ходе нее изменяются степени окисления участвующих в ней элементов.
В лабораторных условиях сероводород получают воздействием на сульфид железа серной или соляной кислоты:
FeS + 2HCl → FeCl₂ + H₂S
Это реакция обмена: в ней взаимодействующие вещества обмениваются своими ионами. Данный процесс обычно проводят с помощью аппарата Киппа.
Свойства сероводорода
При горении сероводорода образуется оксид серы 4 и водяной пар:
2H₂S + 3О₂ → 2Н₂О + 2SO₂
H₂S горит голубоватым пламенем, а если над ним подержать перевернутый химический стакан, то на его стенках появится прозрачный конденсат (вода).
Однако при незначительном понижении температуры данная реакция проходит несколько иначе: на стенках предварительно охлажденного стакана появится уже желтоватый налет свободной серы:
2H₂S + О₂ → 2Н₂О + 2S
На этой реакции основан промышленный способ получения серы.
При поджигании предварительно подготовленной газообразной смеси сероводорода и кислорода происходит взрыв.
Реакция сероводорода и оксида серы(IV) также позволяет получить свободную серу:
2H₂S + SО₂ → 2Н₂О + 3S
Сероводород растворим в воде, причем три объема этого газа могут раствориться в одном объеме воды, образуя слабую и нестойкую сероводородную кислоту (Н₂S). Эту кислоту также называют сероводородной водой. Как видите, формулы газа-сероводорода и сероводородной кислоты записываются одинаково.
Если к сероводородной кислоте прилить раствор соли свинца, выпадет черный осадок сульфида свинца:
H₂S + Pb(NO₃)₂ → PbS + 2HNO₃
Это качественная реакция для обнаружения сероводорода. Она же демонстрирует способность сероводородной кислоты вступать в реакции обмена с растворами солей. Таким образом, любая растворимая соль свинца является реактивом на сероводород.
Некоторые другие сульфиды металлов также имеют характерную окраску, например: сульфид цинка ZnS — белую, сульфид кадмия CdS — желтую, сульфид меди CuS — черную, сульфид сурьмы Sb₂S₃ — красную.
Кстати, сероводород является нестойким газом и при нагревании практически полностью разлагается на водород и свободную серу:
H₂S → Н₂ + S
Сероводород интенсивно взаимодействует с водными растворами галогенов:
H₂S + 4Cl₂ + 4H₂O→ H₂SO₄ + 8HCl
Сероводород в природе и жизнедеятельности человека
Сероводород входит в состав вулканических газов, природного газа и газов, сопутствующих месторождениям нефти. Много его и в природных минеральных водах, например, в Черном море он залегает на глубине от 150 метров и ниже.
Сероводород применяют:
- в медицине (лечение сероводородными ваннами и минеральными водами);
- в промышленности (получение серы, серной кислоты и сульфидов);
- в аналитической химии (для осаждения сульфидов тяжелых металлов, которые обычно нерастворимы);
- в органическом синтезе (для получения сернистых аналогов органических спиртов (меркаптанов) и тиофена (серосодержащего ароматического углеводорода).
Еще одно из недавно появившихся направлений в науке — сероводородная энергетика. Всерьез изучается получение энергии из залежей сероводорода со дна Черного моря.
Природа окислительно-восстановительных реакций серы и водорода
Реакция образования сероводорода является окислительно-восстановительной:
Н₂⁰ + S⁰→ H₂⁺S²⁻
Процесс взаимодействия серы с водородом легко объясняется строением их атомов. Водород занимает первое место в периодической системе, следовательно, заряд его атомного ядра равен (+1), а вокруг ядра атома кружится 1 электрон. Водород с легкостью отдает свой электрон атомам других элементов, превращаясь в положительно заряженный ион водорода — протон:
Н⁰ -1е⁻= Н⁺
Сера находится на шестнадцатой позиции в таблице Менделеева. Значит, заряд ядра ее атома равен (+16), и количество электронов в каждом атоме также 16е⁻. Расположение серы в третьем периоде говорит о том, что ее шестнадцать электронов кружатся вокруг атомного ядра, образуя 3 слоя, на последнем из которых находится 6 валентных электронов. Количество валентных электронов серы соответствует номеру группы VI, в которой она находится в периодической системе.
Итак, сера может отдать все шесть валентных электронов, как в случае образования оксида серы(VI):
2S⁰ + 3O2⁰ → 2S⁺⁶O₃⁻²
Кроме того, в результате окисления серы, 4е⁻могут быть отданы ее атомом другому элементу с образованием оксида серы(IV):
S⁰ + О2⁰ → S⁺4 O2⁻²
Сера может отдать также два электрона c образованием хлорида серы(II) :
S⁰ + Cl2⁰ → S⁺² Cl2⁻
Во всех трех вышеуказанных реакциях сера отдает электроны. Следовательно, она окисляется, но при этом выступает в роли восстановителя для атомов кислорода О и хлора Cl.
Однако в случае образования H2S окисление — удел атомов водорода, поскольку именно они теряют электроны, восстанавливая внешний энергетический уровень серы с шести электронов до восьми. В результате этого каждый атом водорода в его молекуле становится протоном:
Н2⁰-2е⁻ → 2Н⁺,
а молекула серы, наоборот, восстанавливаясь, превращается в отрицательно заряженный анион (S⁻²):
S⁰ + 2е⁻ → S⁻²
Таким образом, в химической реакции образования сероводорода окислителем выступает именно сера.
С точки зрения проявления серой различных степеней окисления, интересно и еще одно взаимодействие оксида серы(IV) и сероводорода — реакция получения свободной серы:
2H₂⁺S-²+ S⁺⁴О₂-²→ 2H₂⁺O-²+ 3S⁰
Как видно из уравнения реакции, и окислителем, и восстановителем в ней являются ионы серы. Два аниона серы (2-) отдают по два своих электрона атому серы в молекуле оксида серы(II), в результате чего все три атома серы восстанавливаются до свободной серы.
2S-² — 4е⁻→ 2S⁰ — восстановитель, окисляется;
S⁺⁴ + 4е⁻→ S⁰ — окислитель, восстанавливается.
Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к
группе халькогенов — элементов VIa группы.
Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при
религиозных обрядах.
Основное и возбужденное состояние атома серы
Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных
электронов отражает количество возможных связей у атома.
В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.
Природные соединения
- FeS2 — пирит, колчедан
- ZnS — цинковая обманка
- PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
- HgS — киноварь
- CuFeS2 — халькопирит
- Cu2S — халькозин
- CuS — ковеллин
- BaSO4 — барит, тяжелый шпат
- CaSO4 — гипс
В местах вулканической активности встречаются залежи самородной серы.
Получение
В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S,
SO2.
H2S + O2 = S + H2O (недостаток кислорода)
SO2 + C = (t) S + CO2
Серу можно получить разложением пирита
FeS2 = (t) FeS + S
В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.
H2S + H2SO4 = S + H2O
Химические свойства
- Реакции с неметаллами
- Реакции с металлами
- Реакции с кислотами
- Реакции с щелочами
На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания —
только со фтором.
S + O2 = (t) SO2
S + F2 = SF6
S + Cl2 = (t) SCl2
S + C = (t) CS2
При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.
K + S = (t) K2S
Al + S = Al2S3
Fe + S = (t) FeS
При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.
S + H2SO4 = (t) SO2 + H2O
S + HNO3 = (t) H2SO4 + NO2 + H2O
Сера вступает в реакции диспропорционирования с щелочами.
S + KOH = (t) K2S + K2SO3 + H2O
Сероводород — H2S
Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные
ванны).
Получение
Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.
Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑
FeS + HCl = FeCl2 + H2S↑
Химические свойства
- Кислотные свойства
- Восстановительные свойства
- Качественная реакция
Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит
от соотношения основания и кислоты).
MgO + H2S = (t) MgS + H2O
KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)
2KOH + H2S = K2S + 2H2O
Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.
Ca + H2S = (t) CaS + H2
Сероводород — сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.
H2S + O2 = H2O + S (недостаток кислорода)
H2S + O2 = H2O + SO2 (избыток кислорода)
H2S + HClO3 = H2SO4 + HCl
Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.
H2S + Pb(NO3)2 = PbS↓ + HNO3
Оксид серы — SO2
Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся
спички).
Получение
В промышленных условиях сернистый газ получают обжигом пирита.
FeS2 + O2 = (t) FeO + SO2
В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота,
распадающаяся на сернистый газ и воду.
K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2↑
Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.
Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O
- Кислотные свойства
- Восстановительные свойства
- Как окислитель
С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.
K2O + SO2 = K2SO3
NaOH + SO2 = NaHSO3
2NaOH + SO2 = Na2SO3 + H2O
Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.
Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4
SO2 + O2 = (t, кат. — Pt) SO3
В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).
CO + SO2 = CO2 + S
H2S + SO2 = S + H2O
Сернистая кислота
Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.
Получение
SO2 + H2O ⇄ H2SO3
Химические свойства
- Диссоциация
- Кислотные свойства
- Окислительные свойства
- Восстановительные свойства
Диссоциирует в водном растворе ступенчато.
H2SO3 = H+ + HSO3-
HSO3- = H+ + SO32-
В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.
CaO + H2SO3 = CaSO3 + H2O
H2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота — основание, 1:2)
H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)
С сильными восстановителями сернистая кислота принимает роль окислителя.
H2SO3 + H2S = S↓ + H 2O
Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.
H2SO3 + Br2 = H2SO4 + HBr
Оксид серы VI — SO3
Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.
Получение
В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора
(оксид ванадия — Pr, V2O5).
SO2 + O2 = (кат) SO3
В лабораторных условиях разложением солей серной кислоты — сульфатов.
Fe2(SO4)3 = (t) SO3 + Fe2O3
Химические свойства
- Кислотные свойства
- Окислительные свойства
Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и
гидросульфаты. Реагирует с водой с образованием серной кислоты.
SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)
SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)
SO3 + Ca(OH)2 = CaSO4 + H2O
SO3 + Li2O = Li2SO4
SO3 + H2O = H2SO4
SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.
SO3 + P = SO2 + P2O5
SO3 + H2S = SO2 + H2O
SO3 + KI = SO2 + I2 + K2SO4
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.