В какой паре клеток будут содержаться отличающиеся наборы молекул днк
Много людей использует термин ДНК. Но статей, нормально описывающих, как она работает почти нет (понятных не биологам). Я уже описывал в общих чертах устройство клетки и самые основы ее энергетических процессов. Теперь перейдем к ДНК.
ДНК хранит информацию. Это знают все. Но вот как она это делает?
Начнем с того, где она в клетке хранится. Примерно 98% хранится в ядре. Остальное в митохондриях и хлоропластах (в этих ребятах протекает фотосинтез). ДНК — это огромный полимер, состоящий из мономерных звеньев. Выглядит примерно так.
Что мы тут видим? Во-первых ДНК — двухцепочечная молекула. Почему это так важно — чуть позже. Далее мы видим синие пятиугольники. Это молекулы дезоксирибозы (такой сахар, чуть меньше глюкозы. От рибозы отличается отсутствием одной OH группы, что придает стабильности молекуле ДНК, в отличие от РНК, в которой используется рибоза. Дальше, для простоты опущу приставку дезокси и буду просто говорить рибоза, да простят нас щепетильные товарищи). Маленькие кружкИ — остатки фосфорной кислоты. Ну и собственно есть азотистые основания. Всего их 5, но в ДНК в основном встречаются 4. Это Аденин, Гуанин, Тимин и Цитозин. То есть, есть рибоза с которой связано азотистое основание. Вместе они образуют так называемые нуклеозиды, которые связываются друг с другом с помощью остатков фосфорной кислоты. Таким образом мы получаем длинную цепь, состоящую из мономеров. Теперь посмотрите на увеличенную левую цепь. Видите C и G соединены тремя пунктирными линиями, а T и A двумя. Что это значит? Да, ДНК состоит из двух цепей, но что удерживает их вместе? Есть такая штука, как водородная связь. Выглядит примерно так. На атомы кислорода (O) и азота (N) формируется частичный отрицательный заряд, а на водороде (H) — положительный. Это приводит к формированию слабых связей.
Связи действительно очень слабые. Их энергия может быть в 200 раз ниже энергии ковалентных связей (образуются за счет перекрытия пары электронных облаков, например связь в молекуле CO2). Однако таких связей много. В каждой нашей клетке ДНК цепи связаны почти 16 миллиардами слабых связей, не мало, согласны?
Но вернемся к числу связей между основаниями. Цитозин и Гуанин связаны тремя связями, а Аденин и Тимин — двумя. Это приводит к тому, что Г и Ц связанны куда прочнее, чем А и Т. Некоторым организмам нужна особая стабильность связей ДНК, например живущим при высоких температурах. При нагревании ДНК содержащая больше ГЦ пар более стабильна. Так что хочешь жить в гейзере — имей много ГЦ пар. Хотя последние исследования говорят, что явной связи между GC составом (% ГЦ пар от всех пар) и температурой обитания нет. Стоит сказать, что варьирует он сильно. Так у Candidatus Carsonella ruddii PV (внутриклеточный эндосимбионт) он примерно 16%, у нас с вами почти 41%, а у Anaeromyxobacter K (бактерия вполне себе средних размеров) достигает 75%.
Тут вы можете видеть связь GC состава с размером генома бактерий. Mb — миллион пар нуклеотидов. Показатель довольно вариативный. Его, кстати, часто юзают как фичу при обучении различного рода классификаторов. Сам недавно писал классификатор для распознания патогенов на основе сырых данных секвенирования и оказалось, что GC состав даже по одному риду вполне себе можно использовать.
Пока не забыл. Почему важно, что ДНК двухцепочечная? На основе одной цепи можно восстановить другую. Если в одной цепи поврежден кусок напротив последовательности Аденин-Аденин-Цитозин, то мы точно знаем, что до повреждения там был Тимин-Тимин-Гуанин. Таким образом наличие второй цепи позволяет надежней хранить информацию.
Круто! Теперь вернемся к самой молекуле ДНК. Это цепочка из 4х типов звеньев. Однако насколько длинная? У Candidatus Carsonella ruddii PV уже упомянутого выше всего 160 000 нуклеотидов. У нас с вами 3.2 миллиарда (в гаплоидной клетке, то есть с одним набором хромосом. У большинства наших клеток их два). Кажется много, да? На самом деле нет. У одноклеточной амебы (Amoeba dubia) он примерно 670 миллиардов пар нуклеотидов. Кажется что это бесконечно длинная цепочка, поэтому давайте переведем размер в любимые нам метры. Если все наши хромосомы (их 46, не забываем; 23 по две копии на каждую) развернуть и вытянуть в одну линию, получится примерно 2х метровая цепочка. ДНК одной амебы хватит, чтоб опоясать футбольный стадион. Но к чему я веду? Ядро, в котором ДНК хранится не очень большое. У нас оно в среднем диаметром в 6 мкм. Не очень то много, если хочешь свернуть 2х метровую нить, пусть и очень тонкую. Причем нужно не просто запихать нить в ядро. Нужно свернуть таким образом, чтобы в любой момент можно было обеспечить доступ к любому ее участку. Задача сложная. И с ней успешно справляются специализированные белки. Они создают ряд спиралей и петель, которые обеспечивают все более и более высокие уровни упаковки и не до допускают спутывания ДНК в гордиев узел. Давайте поговорим о том, как она упаковывается.
Сразу скажу, упаковывается она очень по разному. Но если откинуть экзотику, то остается два способа. Первый характерен для бактерий, второй для эукариот (или иначе ядерных).
Упаковка ДНК у бактерий
Начнем с братьев наших меньших. Бактерии сами по себе обладают не очень большим геномом, в среднем от 1 до 5 миллионов пар нуклеотидов. Наиболее характерное их отличия от нас в том, что у них нет ядра и ДНК плавает в клетке. Не совсем плавает, оно частично прикреплено к клеточной мембране и тоже свернуто, но не так сильно как у нас.
Второе. Бактериальная ДНК чаще всего кольцевая. Так ее проще копировать (нет концов, которые могут потеряться при копировании и не нужно придумывать механизмы сохранения концов). Обычно такое кольцо одно, но у некоторых бактерий их может быть 2 или 3. Есть еще кольца поменьше (от пары тысяч до пары сотен тысяч остатков).Имя им плазмиды, и это вообще отдельная история.
Вернемся к упаковке ДНК. ДНК упаковывают белки-гистоны (есть еще гистоноподобные белки). ДНК это дезоксирибонуклеиновая кислота. Кислота. Это значит что она отрицательно заряжена (за счет остатков фосфорной кислоты). Поэтому белки, связывающие ее положительно заряжены. Таким образом они могут связываются с ДНК. ДНК бактерий вместе с белками ее упаковывающими формируют нуклеоид, при этом на долю ДНК приходится 80% от его массы. Выглядит это примерно так. То есть кольцевая ДНК делится на домены по 40 тысяч пар нуклеотидов. Затем происходит скручивание. Внутри доменов тоже происходит скручивания, но его степень в разных доменах отличается. В среднем степень упаковки бактериальной ДНК варьирует от сотни до тысячи раз.
Есть еще прикольное видео.
Упаковка ДНК у эукариот
Тут все куда интересней. Наше ДНК хорошо упакована и спрятана внутри ядра. И она куда эффективней упакована, нежели у бактерий. Во время митоза (деление клетки) размер 22й хромосомы составляет 2 мкм. Если ее распутать и вытянуть, она будет уже 1,5 см. Что соответствует степени упаковки в 10 000 раз. Это около максимальная степень упаковки нашей ДНК. Во время деления нужно максимально упаковать ДНК, что бы эффективно разделить ее между дочерними клетками. В обыденной жизни степень компактизации составляет примерно 500 раз. Со слишком упакованной ДНК сложно считывать информацию.
Есть несколько уровней упаковки ДНК эукариот
Первый — нуклеосомный уровень. 8 белков-гистонов формируют частицу на которую наматывается ДНК. Затем еще один белок ее фиксирует. Выглядит примерно так.
Получаются своего рода бусы. Плотность упаковки благодаря этому возрастает в 7-10 раз. Далее нуклеосомы упаковываются в фибрилы. Немного похоже на солениод. Тут суммарная степень упаковки может достигать 60 раз.
Следующий этап компактизации ДНК связан с образованием петлеобразных структур, которые называются хромомерами. Фибрила разбита на участки по 10 — 80 тысяч пар азотистых оснований. В местах разбивки находятся глобулы негистоновых белков. ДНК — связывающие белки узнают глобулы негистоновых белков и сближают их. Образуется устье петли. Средняя длина петли включает примерно 50 тысяч оснований. Эту структуру называют интерфазной хромонемой. И именно в ней наше ДНК находится большую часть времени. Уровень упаковки здесь достигает 500-1500 раз.
При необходимости клетка может еще больше компактизировать генетический материал. Идет образование более крупных петель из хромомерной фибриллы. Эти петли в свою очередь образуют новые петли (петли в петли… и это не вязание). Которые в конечном счете формируют хромосому.
В целом процесс упаковки можно описать примерно так.
В итоге из нитей ДНК мы получаем, при делении, суперскрученные структуры, которые можно увидеть под микроскопом. Их мы и зовем хромосомами.
Собственно вещество хромосом зовется хроматином. И степень его упаковки отличается в зависимости от участка хромосомы. Есть эухроматин и гетерохроматин. Эухроматин это довольно расплетенная область хроматина, в ней ДНК находится на хромомерном уровне (упаковка в 500 — 1000 раз). Здесь происходит активное считывание информации. Например, если сейчас клетка активно синтезирует белок А, то область ДНК, его кодирующая будет в состоянии эухроматина, что бы ферменты, «читающие» ДНК могли до нее добраться. Гетерохроматин же содержит ту часть ДНК, которая клетке не особо нужна сейчас. То есть ДНК максимально плотно упакована, дабы не путаться под ногами. В зависимости от потребностей клетки одни области хроматина могут частично расплетаться, в то время как другие — сплетаться. Таким образом еще и осуществляется регуляция (очень грубое приближение), ведь к скрученной области не добраться, и значит ее не прочитать.
Собственно пока это все. Мы обсудили как хранится носитель информации. Сделаем небольшую паузу и через пару дней поговорим о самом кодировании информации.
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
3934. В соматических клетках животного организма диплоидный набор хромосом. Какой набор хромосом (n) и молекул ДНК (c) содержится в клетке в конце синтетического периода интерфазы и в конце телофазы митоза? Ответ поясните.
1) В конце синтетического периода интерфазы соматические клетка содержит набор — 2n4c (2n — число хромосом, 4c — число ДНК)
2) К концу телофазы митоза набор соматической клетки — 2n2c (2n — число хромосом, 2c — число ДНК)
3) В синтетическом периоде интерфазы происходит удвоение числа ДНК (репликация), вследствие чего их набор становится — 4c
4) В анафазе митоза хромосомы распадаются на отдельные хроматиды, вследствие чего к концу митоза — в телофазе набор хромосом не меняется — 2n, а число ДНК уменьшается в два раза — 2c
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 3934.
3982. Установите последовательность процессов первого деления мейоза. Запишите в таблицу соответствующую последовательность цифр.
1) образование пар гомологичных хромосом
2) формирование ядерных оболочек гаплоидных ядер
3) расхождение двухроматидных хромосом к разным полюсам
4) расхождение центриолей к полюсам клетки
5) начальное формирование митотического веретена
6) расположение бивалентов в плоскости экватора
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 3982.
3990. Общая масса всех молекул ДНК в хромосомах растения в пресинтетический период интерфазы одной соматической клетки составляет около 6 * 109 мг. Определите, чему равна масса всех молекул ДНК в ядрах клеток в конце телофазы мейоза I и мейоза II. Объясните полученные результаты.
1) В телофазе мейоза I набор каждой из двух образующихся клеток — n2c — масса молекул ДНК равна 12 × 109 мг / 2 = 6 × 109 мг
2) В синтетическом периоде интерфазы количество ДНК удваивается, набор клетки вступающей в мейоз — 2n4c, то есть она содержит 12 × 109 мг ДНК; мейоз I — редукционное деление, в анафазе мейоза I биваленты распадаются на отдельные хроматиды, поэтому к концу мейоза I число хромосом и молекул ДНК становится в два раза меньше, набор каждой из двух образующихся клеток — n2c, то есть масса ДНК в каждой 6 × 109 мг
3) В телофазе мейоза II набор клетки — nc, масса всех молекул ДНК — 3 × 109 мг
4) Мейоз II — эквационное деление, в анафазе мейоза II хромосомы распадаются на дочерние хроматиды (однохроматидные хромосомы), поэтому к концу мейоза II набор клетки — nc, количество хромосом не изменяется по сравнению с исходным набором в мейозе II, а масса ДНК уменьшается в два раза — nc, то есть масса всех молекул ДНК — 3 × 109 мг
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 3990.
3995. Все перечисленные ниже признаки характерны для описания этапов деления клетки изображенных на рисунке. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1. гаплоидные дочерние ядра2. однохроматидные хромосомы в биваленте3. диплоидный набор хромосом в исходной клетке4. двухполюсное веретено деления5. кроссинговер
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 3995.
4011. Проанализируйте таблицу «Деление клетки». Заполните пустые ячейки таблицы, используя понятия, приведенные в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) формирование глобулы белка
2) образование митотического веретена деления
3) синтез иРНК
4) образование дочерних ДНК
5) интерфаза
6) растворение ядерной оболочки
7) телофаза
8) анафаза
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 4011.
Для вас приятно генерировать тесты, создавайте их почаще
2646. В соматических клетках клевера содержится 14 хромосом. Какое число хромосом и молекул ДНК будут иметь клетки клевера в телофазе мейоза I и анафазе мейоза II по сравнению с интерфазой? Ответ поясните.
1) В синтетическом периоде интерфазы происходит удвоение ДНК (каждая хромосома после него состоит из двух молекул ДНК (хроматид)) — набор клетки 2n4c — 14 хромосом, 28 молекул ДНК
2) В телофазе мейоза I число хромосом уменьшается (редукционное деление, в анафазе распадаются биавленты на дочерние хромосомы , происходит цитокинез (деление цитоплазмы) и образуются две клетки, в каждой из которых набор хромосом — n2c — 7 хромосом, 14 молекул ДНК
3) В анафазе мейоза II хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды, вследствие чего набор клетки становится равен 2n2c — 14 хромосом и 14 молекул ДНК — у каждого полюса клетки набор nc — 7 хромосом и 7 молекул ДНК
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 2646.
2654. Все приведённые ниже характеристики, кроме трех, используются при описании изображённого на схеме процесса. Определите трех характеристики, «выпадающие»из общего списка, и запишите цифры, под которыми они указаны.
1. обмен участками гомологичных хромосом2. деспирализация хромосом3. сближение гомологичных хромосом4. расхождение сестринских хроматид5. профаза мейоза I6. расположение хромосом на экваторе клетки
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 2654.
2674. В клетках эндосперма семян лилии содержится 36 хромосом. Как изменится число хромосом и молекул ДНК в телофазе мейоза I и мейоза II по сравнению с интерфазой у лилии? Объясните полученные результаты.
1) В клетках эндосперма содержится триплоидный набор хромосом (3n) — 36 хромосом, диплоидный набор для соматических клеток лилии (2n) — 24 хромосомы
2) В синтетическом периоде интерфазы происходит удвоение ДНК, вследствие чего набор хромосом становится 2n4c — 24 хромосомы 48 молекул ДНК
3) Мейоз I — редукционное деление, в результате которого количество хромосом уменьшается (в анафазе мейоза I распадаются биваленты на хромосомы), поэтому к концу мейоза I число хромосом — n2c — 12 хромосом 24 молекул ДНК
4) К концу мейоза II (эквационного деления) наследственный материал равномерно распределяется: в каждой набор клетки — nc — 12 хромосом 12 молекул ДНК
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 2674.
2679. Все перечисленные ниже признаки, кроме трех, можно использовать для описания процесса, изображённого на рисунке. Определите три признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1. обеспечивает рост, регенерацию, возобновление клеток при
старении2. сопровождается редукцией числа хромосом3. в профазе происходит конъюгация и кроссинговер4. непрямое деление эукариотической клетки5. дочерние клетки имеют одинаковый набор хромосом, такой же, как родительская клетка6. образуются клетки с гаплоидным набором хромосом
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 2679.
2698. Какой тип и фазу деления клетки иллюстрирует рисунок? Ответ обоснуйте. Какие процессы происходят на этом этапе деления клетки? К чему приводят эти процессы? Ответ поясните.
1) Профаза мейоза I: в результате сближения (конъюгации) гомологичных хромосом происходит образование бивалентов — структур, смотрящих из двух хромосом и четырех хроматид (4 молекул ДНК), затем происходит кроссинговер
2) Разрушение ядерной оболочки, конъюгация (сближение гомологичных хромосом, образование бивалентов), кроссинговер (обмен участками между гомологичными хромосомами), образование нитей веретена деления
3) В результате кроссинговера образуются новые комбинации генов, что приводит к генетическому разнообразию в потомстве
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 2698.
Для вас приятно генерировать тесты, создавайте их почаще
При решении задач на определение числа хромосом и числа молекул ДНК нужно помнить следующие моменты:
1) До начала мейоза в интерфазе происходит удвоение ДНК, поэтому число хромосом2п, число ДНК-4с. 2) В профазе1, метафазе 1, анафазе 1 — 2п4с — так как деления клетки не происходит. 3) в телофазе — остается п2с, так как после расхождения гомологичных хромосом в клетках остается гаплоидный набор, но хромосомы двухроматидные. 4) В профазе 2, метафазе 2 так же как и телофазе1 — п2с. 5) Особое внимание обратить на анафазу 2, так как после расхождения хроматид число хромосом увеличивается в 2 раза (хроматиды становятся самостоятельными хромосомами, но пока они все в одной клетке). 6) в телофазе 2 — пс (в клетках остаются однохроматидные хромосомы). Если все это выучить на этих задачах очень просто можно получить 3 балла.
Например:
1) В клетках одного из видов пшеницы содержится 28 хромосом. Определите число хромосом и молекул ДНК при образовании пыльце в тычинке на стадиях профазы мейоза 1, профазы 2 и телофазы мейоза 2. Объясните полученные результаты.
Ответ: 1) В профазе 1 мейоза число хромосом равно 28 (хромосомы состоят из двух хроматид), а число молекул ДНК равно 56 , потому что в интерфазе происходит удвоение молекул ДНК.
2) В профазе 2 мейоза число хромосом равно14, так как после первого деления число хромосом уменьшается в 2 раза. (но хромосомы состоят из двух хроматид), а число молекул ДНК равно 28, потому что после первого деления удвоения ДНК не происходит.
3) В конце телофазы 2 число хромосом равно 14( однохроматидные хромосомы ), число молекул ДНК равно тоже 14.
2) Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.
Ответ: 1) перед началом мейоза число молекул ДНК – 56, так как они удваиваются, а число хромосом не изменяется – их 28;
2) в анафазе мейоза I число молекул ДНК 56, число хромосом – 28, к полюсам клетки расходятся гомологичные хромосомы;
3) в анафазе мейоза II число хромосом – 28, к полюсам клетки расходятся сестринские хроматиды и становятся самостоятельными хромосомами (но все они в одной клетке), число молекул ДНК – 28, после первого деления удвоения ДНК не происходит, поэтому число ДНК уменьшилось в 2 раза.
3) В клетках эндосперма семян лилии 21 хромосома. Как изменится число хромосом и молекул ДНК в конце телофазы мейоза1 и мейоза2 по сравнению с интерфазой у этого организма? Ответ поясните.
Ответ: 1) Эндосперм цветковых растений имеет триплоидный набор хромосом (3п), значит, число хромосом в одинарном наборе (п) равно 7хромосомам. Перед началом мейоза хромосомный набор в клетках двойной(2п) из 14 хромосом, в интерфазе происходит удвоение молекул ДНК, поэтому число молекул ДНК- 28 (4с).
2) В первом делении мейоза расходятся гомологичные хромосомы, состоящие из двух хроматид, поэтому в конце телофазы мейоза 1 хромосомный набор в клетках одинарный (п) из 7 хромосом, число молекул ДНК- 14 (2с).
3) Во втором делении мейоза расходятся хроматиды, поэтому в конце телофазы 2 мейоза хромосомный набор в клетках одинарный (п)-7 хромосом, число молекул ДНК равно одному-7 (1с).
4) Какой хромосомный набор характерен для клеток зародыша и эндосперма семени, листьев цветкового растения. Объясните результат в каждом случае.
Ответ: 1) в клетках зародыша семени диплоидный набор хромосом – 2n, так как зародыш развивается из зиготы – оплодотворённой яйцеклетки;
2) в клетках эндосперма семени триплоидный набор хромосом – 3n, так как образуется при слиянии двух ядер центральной клетки семязачатка (2n) и одного спермия (n);
3) клетки листьев цветкового растения имеют диплоидный набор хромосом – 2n, так как взрослое растение развивается из зародыша.
А теперь другой тип задач:
1) Одна из цепей ДНК имеет последовательность нуклеотидов: ЦАТ- ГГЦ- ТГТ – ТЦЦ – ГТЦ… Объясните, как изменится структура молекулы белка, если произойдет удвоение четвертого триплета нуклеотидов в цепи ДНК? По таблице генетического кода найдите аминокислоты в составе белка.
Элементы ответа:
1) Новая цепь ДНК будет: ЦАТ- ГГЦ- ТГТ – ТЦЦ — ТЦЦ – ГТЦ.
2) Структура и-РНК будет: ГУА – ЦЦГ – АЦА – АГГ – АГГ – ЦАГ.
3) Произойдет удлинение молекулы белка на одну аминокислоту.
4) Молекула белка будет состоять из аминокислот: вал – про – тре – арг – арг – глн.
2) Участок молекулы ДНК имеет следующий состав: Г-А-Т-Г-А-А-Т-А-Г-Т-Г-Ц-Т-Т-Ц. Перечислите не менее 3-х последствий, к которым может привести случайная замена седьмого нуклеотида тимина на цитозин (Ц).
Элементы ответа:
1) Произойдет генная мутация – изменится кодон третьей аминокислоты;
2) В белке может произойти замена одной аминокислоты на другую, в результате изменится первичная структура белка;
3) Могут измениться все остальные структуры белка, что повлечет за собой появление у организма нового признака.
3) В биосинтезе белка участвовали т-РНК с антикодонами: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих аденин, гуанин, тимин, цитозин в двухцепочечной молекуле ДНК.
Элементы ответа:
1) Антикодоны т-РНК комплементарны кодонам и-РНК, а последовательность нуклеотидов и-РНК комплементарна одной из цепей ДНК.
2) т-РНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ
и-РНК: ААУ-ЦЦГ-ГЦГ-УАА-ГЦА
1 цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ
2 цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.
3) В молекуле ДНК А=Т= 7, число Г=Ц= 8.
4) Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: АТА-ГЦТ-ГАА-ЦГГ-АЦТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Решение:
1) Участок ДНК: АТА -ГЦТ-ГАА-ЦГГ-АЦТ.
Участок т-РНК: УАУ-ЦГА-ЦУУ-ГЦЦ-УГА
Кодоны и-РНК: АУА-ГЦУ-ГАА-ЦГГ-АЦУ
2) Нуклеотидная последовательность антикодона ЦУУ (третий триплет) соответствует кодону на и- РНК — ГАА;
3) По таблице генетического кода этому кодону ГАА соответствует аминокислота ГЛУ, которую будет переносить данная тРНК.
5) Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое число нуклеотидов с А, Т, Г и Ц содержится в двухцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.
Элементы ответа:
1) Согласно принципу комплементарности во второй цепи ДНК содержится нуклеотидов: в двух цепях ДНК содержится нуклеотидов: А – 400, Т – 400, Ц – 350, Г – 350;
2) Информацию о структуре белка несет одна из двух цепей, число нуклеотидов в одной цепи ДНК равно 300 + 100 + 150 + 200 = 750;
3) Одну аминокислоту кодирует триплет нуклеотидов, поэтому в белке должно содержаться 750 : 3 = 250 аминокислот.
6) В процессе трансляции участвовало 30 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
Ответ: 1) Одна тРНК транспортирует одну аминокислоту, следовательно, 30 тРНК соответствуют 30 аминокислотам, и белок состоит из 30 аминокислот;
2)Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодируют 30 триплетов;
3)Количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, 30 х 3 = 90.