В каких веществах содержится водорода
Описание
Содержимое в человеческом организме
Биологическая роль
Источники
Суточная потребность
Недостаток и избыток
Токсичность
Описание
(вернуться к оглавлению)
Водород обладает атомом с простейшим строением. Он содержит один электрон и один протон. В периодической системе элементов водород занимает первое место. Водород – наиболее распространенный элемент во Вселенной, так как его атомы сосредоточены в межзвездном пространстве (88,6% атомов, 11,3% атомов приходится на гелий, и только 0,1% – атомы всех остальных элементов). Это пространство не однородно. Водород сконцентрирован в скопления в виде огромных облаков. Помимо этого, водород составляет больше половины массы солнца и большинства звезд. Водород составляет около 1% от общей массы земной коры.
Простое вещество состоит из молекул Н2. При обычных условиях водород представляет собой бесцветный газ, не имеющий запаха, по свойствам приближающийся к идеальному газу. Межмолекулярные взаимодействия в водороде слабы, и поэтому он имеет очень низкие температуры плавления (-259°С) и кипения (-253°С).
Водород взаимодействует практически со всеми простыми веществами, как с металлами, так и с неметаллами. Способность молекулярного водорода реагировать с другими веществами существенно зависит от температуры. Энергия связи в молекуле Н2 (436 кДж/моль) достаточно велика, это позволяет при комнатной температуре (и в темноте) существовать смесям водорода, например, с кислородом или хлором. Но уже при 200-400°С водород проявляет высокую химическую активность.
Из всех соединений водорода наибольшее значение имеет его оксид Н2О, называемый водой. Общее количество воды на Земле, включая связанную в минералах литосферы и мантии, оценивается в 1,6?106 км3, в том числе пресной воды — 9?107 км3. Вода — непременный участник всех процессов жизнедеятельности. В живых организмах она составляет от 50% до 90% их общей массы.
Пресная вода содержит в среднем 35 г/л растворенных солей. В основном это хлористый натрий NaCL (27 г/л). Установлено, что океанская вода содержит в той или иной форме практически все элементы периодической системы.
Вода обладает уникальной химической связью, которая обуславливает ее уникальные химические свойства – увеличение плотности воды при плавлении. Она обладает значительной способностью реагировать с другими веществами. Вода реагирует со многими простыми веществами, как металлами, так и неметаллами, с оксидами, галогенидами и другими классами веществ. Наконец, вода является прекрасным катализатором большинства окислительно-восстановительных реакций.
Помимо оксида, водород образует еще одно соединение с кислородом – пероксид водорода Н2О2. Возможность его образования и свойства в большей мере определяются свойствами кислорода, чем водорода.
Взаимодействие кислорода и водорода протекает достаточно сложно, при этом скорость взаимодействия сильно зависит от температуры. Вода при непосредственном столкновении молекул Н2 и О2 не образуется. Важно то, что при появлении каждого нейтрального атома водорода образуется не одна, а несколько молекул воды. Взаимодействие водорода и кислорода может происходить не только под воздействием температуры, но и под влиянием катализатора, особенно платины.
Содержание в человеческом организме
(вернуться к оглавлению)
Водород входит в состав почти всех органических соединений, из чего следует, что в организме человека он распространен. Он входит в состав аминокислот, составных частей белков, представляющих основу жизнедеятельности. Помимо этого, водород является компонентом жиров и углеводов, веществ, обеспечивающих процесс жизнедеятельности живых организмов.
Помимо этого, водород присутствует человеческом организме в виде воды. Вода выступает в качестве главной среды процессов жизнедеятельности. В ней растворяется большинство веществ, участвующих в процессах метаболизма. Ниже указано содержание воды в органах и тканях человека.
Содержание воды в организме человека
Орган, ткань, биологическая жидкость | Содержание воды, % |
Головной мозг | 83 |
Спинной мозг | 74,8 |
Почки | 82 |
Сердце | 79 |
Легкие | 79 |
Мышцы | 75 |
Кожа | 72 |
Печень | 70 |
Скелет | 46 |
Желудочный сок | 99,5 |
Слюна | 99,4 |
Плазма крови | 92 |
Моча | 83 |
Желчь | 75 |
Слезная жидкость | 99 |
Биологическая роль
(вернуться к оглавлению)
Как уже было сказано выше, водород входит в состав органических соединений, из которых состоят органические формы жизни. Он входит в состав белков (10%), жиров (4,9%), углеводов (6,18%), нуклеиновых кислот, гормонов, ферментов, витаминов, то есть можно сказать, что водород в той или иной степени важен для всех органов и систем живого организма, и всех, протекающих в них процессов, поддерживающих его жизнедеятельности.
Помимо этого, водород входит в состав воды, которая составляет 60% от массы тела и является основой жизни.
Источники
(вернуться к оглавлению)
Основными источниками водорода являются вода и пища, состоящая все из тех же органических веществ – белков, жиров, углеводов и других. При попадании в организм эти вещества под действие пищеварительной системы распадаются до мономеров, которые в дальнейшем используются нашим организмом для собственных нужд. В основе этого процесса лежат соединения, в состав которых входит водород.
Суточная потребность
(вернуться к оглавлению)
Суточная потребность водорода не нормируется, но существуют нормы потребления вышеперечисленных органических веществ с пищей, в состав которых входит водород.
Помимо этого, существует суточная норма потребления воды, как необходимого для жизни вещества, она составляет 3 л.
Недостаток и тзбыток
(вернуться к оглавлению)
Вряд ли, представляется возможным оценить, как на организм влияет недостаток или избыток водорода, поскольку он входит в состав почти всех необходимых человеку веществ. Поэтому можно оценивать влияние нехватки или избытка лишь конкретных его соединений.
Особенное значение стоит уделить нехватке воды. Так как вода является основой живого организма, то ее недостаток отрицательно влияет на все происходящие в нем процессы. Недостаток воды приводит к такому патологическому состоянию как обезвоживание, которое может быть смертельно при потере воды 20-25% от общего количества воды в организме. Это может быть вызвано как недостаточным поступлением воды в организм человека, так и чрезмерной ее потерей, в следствии различных физиологических нарушений (например, диарея).
Токсичность
(вернуться к оглавлению)
Сам по себе водород не токсичен, но он является весьма распространенным веществом, входящим в состав множества токсичных химических соединений. Например, водород является частью бензола C6H6, вещества, стоящего на втором месте по токсичности согласно данным Всемирной организации здравоохранения (ВОЗ). Или, например, так называемая тяжелая вода D2O, представляющая собой соединение изотопа водорода дейтерия и кислорода, так же является токсичным веществом.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 марта 2020;
проверки требует 1 правка.
Металли́ческий водоро́д — совокупность фазовых состояний водорода, находящегося при крайне высоком давлении и претерпевшего фазовый переход. Металлический водород представляет собой вырожденное состояние вещества и, по некоторым предположениям, может обладать некоторыми специфическими свойствами — высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.
Предсказан теоретически в 1935 году.
История исследований[править | править код]
В 1930-х годах британский ученый Джон Бернал предположил, что атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов, может оказаться стабильным при высоких давлениях[1]. В 1935 году Юджин Вигнер и Xиллард Белл Хантингтон провели соответствующие расчёты. Гипотеза Бернала нашла подтверждение — согласно полученным расчётам, молекулярный водород переходит в атомарную металлическую фазу при давлении около 250 тыс. атмосфер (25 ГПа) со значительным увеличением плотности[2]. В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведётся теоретически. Попытки получения, начатые в 1970-х годах, привели к сообщениям о возможном получении металлического водорода в 1996, 2008 и 2011 году, пока, наконец, в 2017 году профессор Айзек Сильвера и его коллега Ранга Диас не добились получения стабильного образца при давлении 5 млн атмосфер[3][4][1], однако камера, где хранился образец, под давлением разрушилась, и образец был потерян.
Связь с другими областями физики[править | править код]
Астрофизика
Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов — Юпитера, Сатурна — и крупных экзопланет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода.
Теоретические свойства[править | править код]
Переход в металлическую фазу[править | править код]
При увеличении внешнего давления до десятков ГПа коллектив атомов водорода начинает проявлять металлические свойства. Ядра водорода (протоны) сближаются друг с другом существенно ближе боровского радиуса, на расстояние, сравнимое с длиной волны де Бройля электронов. Таким образом, сила связи электрона с ядром становится нелокализованной, электроны слабо связываются с протонами и формируют свободный электронный газ так же, как в металлах.
Жидкий металлический водород[править | править код]
Жидкая фаза металлического водорода отличается от твердой фазы отсутствием дальнего порядка. Имеется дискуссия о допустимом диапазоне существования жидкого металлического водорода. В отличие от гелия-4, жидкого при температуре ниже 4,2 K и нормальном давлении благодаря нулевой энергии нулевых колебаний, массив плотно упакованных протонов обладает значительной энергией нулевых колебаний. Соответственно, переход от кристаллической фазы к неупорядоченной ожидается при ещё более высоких давлениях. Исследование, проведенное Н. Ашкрофтом, допускает область жидкого металлического водорода при давлении около 400 ГПа и низких температурах[5][6]. В других работах Е. Бабаев предполагает, что металлический водород может представлять собой металлическую сверхтекучую жидкость.[7][8]
Сверхпроводимость[править | править код]
В 1968 году Нейл Ашкрофт предположил, что металлический водород может обладать сверхпроводимостью при сравнительно высоких температурах.[9]
Более точные расчёты[10] (Н. А. Кудряшов, А. А. Кутуков, Е. А. Мазур, Письма ЖЭТФ, т. 104, вып. 7, 2016, с. 488) показали, что критическая температура металлического водорода в фазе I41/AMD, той самой, которая изучалась[3] Рангой Диас и Иcааком Сильверой при давлении в 5 миллионов атмосфер, дает величину температуры перехода в сверхпроводящее состояние 215 кельвинов, то есть −58 градусов по Цельсию.
Экспериментальные попытки получения[править | править код]
Металлизация водорода ударным сжатием в 1996 году[править | править код]
В 1996 году Ливерморская национальная лаборатория сообщила, что в ходе исследований были созданы условия для металлизации водорода и получены первые свидетельства его возможного существования[11]. Кратковременно (около 1 мс) было достигнуто давление более 100 ГПа ( атм.), температура порядка тысяч кельвинов при плотности вещества около 600 кг/м3[12]. Поскольку предыдущие опыты по сжатию твердого водорода в ячейке с алмазными наковальнями до 250 ГПа не дали результата, целью эксперимента не было получение металлического водорода, а только изучение проводимости образца под давлением. Однако, по достижении 140 ГПа электрическое сопротивление практически исчезло. Ширина запрещенной зоны водорода под давлением составила 0.3 эВ, что оказалось сравнимо с тепловой энергией , соответствующей 3000 К и что свидетельствует о переходе «полупроводник — металл».
Исследования после 1996 года[править | править код]
Продолжались попытки перевести водород в металлическое состояние статическим сдавливанием при низких температурах. А. Руофф и Ч. Нараяна (Корнеллский университет, 1998)[13], П. Лоувьер и Р. Летуле (2002) последовательно приближались к давлениям, наблюдаемым в центре Земли (324—345 ГПа), но все же не наблюдали фазового перехода.
Эксперименты 2008 года[править | править код]
Теоретически предсказанный максимум кривой плавления на фазовой диаграмме, указывающий на жидкую металлическую фазу водорода, был экспериментально обнаружен Ш. Деемьяд и И. Сильвера[14].
Группа М. Ереметца заявила о переходе силана в металлическое состояние и проявление сверхпроводимости[15], но результаты не были повторены.[16][17]
Эксперименты 2011 года[править | править код]
В 2011 году было сообщено о наблюдении жидкой металлической фазы водорода и дейтерия при статическом давлении 260—300 ГПа.
[18], что вновь вызвало вопросы в научном сообществе[19].
Эксперименты 2015 года[править | править код]
26 июня 2015 году в журнале Science была опубликована статья, в которой описан успешный эксперимент группы исследователей из Сандийских национальных лабораторий (США) совместно с группой из Ростокского университета (Германия) по сжатию жидкого дейтерия (тяжёлого водорода) с помощью Z-Машины до состояния, которое проявляет свойства металла[20].
Эксперименты 2016 года[править | править код]
В июле 2016 сообщалось, что физикам из Гарвардского университета удалось получить в лаборатории металлический водород. Они нагрели жидкий водород с помощью коротких вспышек лазера до температуры около 1900 градусов Цельсия и подвергли давлению в 1,1—1,7 мегабар[21].
Ожидается, что это вещество будет метастабильным, то есть при снятии давления останется металлом.
Эксперимент физиков помогает объяснить, какие процессы могут происходить в недрах газовых гигантов. Учёные предполагают, что в будущем металлический водород может быть использован в качестве ракетного топлива или как сверхпроводник, способный существовать при комнатной температуре[22].
Научное сообщество скептически отнеслось к данной новости[23], ожидая повторного эксперимента[24].
Эксперименты 2020 года[править | править код]
В январе 2020 года французские физики подтвердили условия существования металлического водорода. [25][26]
Потенциальное применение[править | править код]
Топливные элементы
Метастабильные соединения металлического водорода перспективны как компактное, эффективное и чистое топливо. При переходе металлического водорода в обычную молекулярную фазу высвобождается в 20 раз больше энергии, чем при сжигании смеси кислорода и водорода — 216 МДж/кг[27].
Примечания[править | править код]
- ↑ 1 2 Сергей Стишов. Практическое использование металлического водорода следует отнести к научной фантастике // Коммерсантъ Наука, № 1, 24 февраля 2017
- ↑
Wigner, E.; Huntington, H.B. On the possibility of a metallic modification of hydrogen (англ.) // Journal of Chemical Physics. — 1935. — Vol. 3, no. 12. — P. 764. — doi:10.1063/1.1749590. - ↑ 1 2 Ranga P. Dias, Isaac F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen (англ.) // Science. — 2017-01-26. — P. eaal1579. — ISSN 1095-9203 0036-8075, 1095-9203. — doi:10.1126/science.aal1579.
- ↑ In, Geology. Scientists Have Finally Created Metallic Hydrogen, Geology IN. Дата обращения 28 января 2017.
- ↑ Ashcroft N. W. The hydrogen liquids (англ.) // Journal of Physics: Condensed Matter. — 2000. — Vol. 12, no. 8A. — P. A129. — doi:10.1088/0953-8984/12/8A/314.
- ↑ Bonev S.A., et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations (англ.) // Nature. — 2004. — Vol. 431, no. 7009. — P. 669. — doi:10.1038/nature02968. — arXiv:cond-mat/0410425.
- ↑ Babaev E., Ashcroft N. W. Violation of the London law and Onsager–Feynman quantization in multicomponent superconductors (англ.) // Nature Physics. — 2007. — Vol. 3, no. 8. — P. 530. — doi:10.1038/nphys646. — arXiv:0706.2411.
- ↑ Babaev E., Sudbø A., Ashcroft N. W. A superconductor to superfluid phase transition in liquid metallic hydrogen (англ.) // Nature. — 2004. — Vol. 431, no. 7009. — P. 666. — doi:10.1038/nature02910. — arXiv:cond-mat/0410408.
- ↑ Ashcroft, N.W. Metallic Hydrogen: A High-Temperature Superconductor? (англ.) // Physical Review Letters. — 1968. — Vol. 21, no. 26. — P. 1748. — doi:10.1103/PhysRevLett.21.1748.
- ↑ N. A. Kudryashov, A. A. Kutukov, E. A. Mazur. Critical temperature of metallic hydrogen at a pressure of 500 GPa (англ.) // JETP Letters. — 2016-12-14. — Vol. 104, iss. 7. — P. 460—465. — doi:10.1134/S0021364016190061.
- ↑ Weir S. T., Mitchell A. C., Nellis W. J. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) (англ.) // Physical Review Letters. — 2004. — Vol. 76, no. 11. — P. 1860. — doi:10.1103/PhysRevLett.76.1860.
- ↑ Nellis, W. J. Metastable Metallic Hydrogen Glass. Lawrence Livermore Preprint UCRL-JC-142360 OSTI 15005772 (2001). — «minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm3, and 3000 K».
- ↑ Ruoff A. L., et al. Solid hydrogen at 342 GPa: No evidence for an alkali metal (англ.) // Nature. — 1998. — Vol. 393, no. 6680. — P. 46. — doi:10.1038/29949.
- ↑ Deemyad S., Silvera I. F. The melting line of hydrogen at high pressures (англ.) // Physical Review Letters. — 2008. — Vol. 100, no. 15. — doi:10.1103/PhysRevLett.100.155701. — arXiv:0803.2321.
- ↑ Eremets M. I., et al. Superconductivity in hydrogen dominant materials: Silane (англ.) // Science. — 2008. — Vol. 319, no. 5869. — P. 1506—1509. — doi:10.1126/science.1153282.
- ↑ Degtyareva O. Formation of transition metal hydrides at high pressures (англ.) // Solid State Communications. — 2009. — Vol. 149, no. 39—40. — doi:10.1016/j.ssc.2009.07.022. — arXiv:0907.2128v1.
- ↑ Hanfland M., Proctor J., Guillaume C. L., et al. High-Pressure Synthesis, Amorphization, and Decomposition of Silane (англ.) // Physical Review Letters. — 2011. — Vol. 106, no. 9. — doi:10.1103/PhysRevLett.106.095503.
- ↑ Eremets M. I., Troyan I. A. Conductive dense hydrogen (англ.) // Nature Materials. — 2011. — No. 10. — P. 927—931. — doi:10.1038/nmat3175.
- ↑ Nellis W. J., Ruoff A., Silvera I. F. Has Metallic Hydrogen Been Made in a Diamond Anvil Cell? (англ.) // arxiv.org. — 2012. — arXiv:https://arxiv.org/abs/1201.0407.
- ↑ M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, R. Redmer. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium (англ.) // Science. — 26 June 2015. — Vol. 348, no. 6242. — P. 1455—1460. — doi:10.1126/science.aaa7471.
- ↑ Физики получили частицу Юпитера на Земле
- ↑ В США ученые провели эпохальный опыт. Они получили металлический водород // Независимая газета, 27.01.2017.
- ↑ Physicists doubt bold report of metallic hydrogen // Nature — News & Comment
- ↑ There’s Reason To Be Skeptical About Metallic Hydrogen // Форбс (англ.)
- ↑ Физики нашли новые намеки на существование металлического водорода
- ↑ Подтверждено существование аномальной формы материи
- ↑ Silvera, Isaac F. Metallic Hydrogen: A Game Changing Rocket Propellant. NIAC SPRING SYMPOSIUM (27 марта 2012). — «Recombination of hydrogen atoms releases 216 MJ/kg Hydrogen/Oxygen combustion in the Shuttle releases 10 MJ/kg … density about 12-13 fold». Дата обращения 13 мая 2012.
Для понимания значения водорода и куда он может пойти, важно знать, откуда этот газ пришел.
Чтобы понять, как возник водород, необходимо принять во внимание происхождение Вселенной, в то время как многие элементы имеют одно и то же происхождение.
С развитием технологий и развитием новых методов интерпретации и расширения знаний формируется более полная картина первичных событий современных теорий о Вселенной. Ученые доказали что значение водорода ключевое так как эта молекула является самой распространенной во всей Вселенной.
Во время формирования космоса и элементов, состоящих из уплотненной массы нуклонов около 16 x 109 лет назад точное позиционирование Земли позволило максимально создать оксид водорода – воду в жидком состоянии, которую люди считают растворителем жизни.
Растворитель жизни – вода состоит из двух атомов водорода и кислорода H2O.
Наиболее распространенным веществом на планете Земля является именно вода, которая составляет 72%.
Поэтому значение водорода имеет самую важную роль для человека в связи с его присутствием в физических и химических процессах, позволяющих существовать жизни.
Обилие водорода во Вселенной и конкретно на планете Земля в виде уникальных свойств воды и других соединений ставит это вещество ключевым благодаря неисчерпаемости, чистоте, удобству и независимости.
Производство чистого водорода в современном мире
Большая часть, порядка 2/3 потребляемой в мире энергии, производится из природного газа и нефти. Сжигание таких углеводородов для отопления и транспортировки способствует половине выбросов парниковых газов. Эти углеводороды обычно используются, хранятся и транспортируются в жидком или газообразном состоянии.
Чистый водород практически не присутствует в природе и может быть создан из нескольких возобновляемых и невозобновляемых материалов. Сегодня существует два основных способа создания этого чистого газа: электролиз и реформация углеводородов.
Понимание физических и химических свойств и значение водорода играет важную роль. Физические характеристики водорода изучены и доступны теперь во многих местах, включая энциклопедию химической технологии.
Атом водорода – самый легкий элемент известный человеку – он состоит из одного электрона и одного протона.
Молекула бесцветна, без запаха и вкуса, она примерно в 14 раз легче воздуха; ее скорость диффузии быстрее, чем у любого другого газа. Жидкое состояние происходит при -253 градусах, а твердое конденсируется при -259. Он присутствует в воде и обильно присутствует в органическом веществе. Химические свойства при обычной комнатной температуре инертны, если не активированы или не поддаются внешним агентам. С другой стороны, значение водорода в атомарном виде в высокой реакционной способности даже при комнатной температуре. Обычно известно, что при взаимодействии водорода с кислородом образуются водяной пар, голубое пламя, свет и тепловая энергия.
Некоторое из промышленных значений водорода заключается в применении в различных отраслях:
- В пищевой промышленности для увеличения насыщенности жиров и масел.
- В металлургии повышает температуру плавления и стойкость к окислению.
- В электронике используется как разбавитель в эпитаксиальном кристаллическом составе.
- В атомной промышленности используется в качестве кислородного мусорщика.
Водородная технология
Существует несколько методов сбора или получения водорода, в том числе с помощью молекул из углеводородов.
Существует два основных процесса водородной технологии: окислительные и неокислительные процессы.
Окислительная обработка происходит в присутствии окислителей, таких как пар, кислород, CO2. Это происходит при высокой температуре более 1700 градусов по Цельсию. Универсальное уравнение описывает химическое уравнение, представляющее процесс окисления углеводорода в водород.
Окислительные процессы не происходят при расщеплении связей C-H в ответ на такие энергозатраты, как тепло, плазма, излучение, электролиз воды и другие.
Производство водорода из легких углеводородов, требует наименьшее количество энергии, чем электролиз воды, который является наиболее энергоемким.
Транспортировка и хранение
Транспортировка и хранение водорода является одной из основных проблем водородной экономики.
Значение водорода, пытающегося попасть на рынок энергоресурсов, все еще очень сомнительное из-за важных критериев по стоимости и производительности. Однако цена и характеристики водородного топлива улучшаются, и этот энергоресурс будет иметь шанс.
Говоря об энергии водорода, необходимо улучшить несколько целевых показателей, а именно:
- водородную емкость;
- снизить стоимость;
- увеличить долговечность;
- изменить скорость получения;
- улучшить качество топлива;
- экологичность, безопасность и здоровье.
Люди знают, что сейчас существует технология, которая может совместно решать проблемы по транспортировке и хранению водорода. Однако, главные прорывы были достигнуты, что решает важную веху в этом отношении.
Когда дело доходит до бортового хранения (машина, самолет…), задачей должно быть повышение эффективности транспортного средства и способность хранить большое количество этого газа.
Из физико-химических свойств молекулы Н2 известно, что она занимает большой объем.
Новая концепция по значению водорода должна учитывать резервуар для хранения, интерфейсы с инфраструктурой наполнения, функцию безопасности, необходимую изоляцию или экранирование, температуру, контроль влажности, регуляторы, электронный контроллер, датчики, компрессоры, насосы, фильтры и т. д.. Температура играет ведущую роль при бортовой системе хранения Н2, которая колеблется от -40 до +60 градусов, добавляя к приемлемой температуру поставки. При использовании водородного топлива с температурами в диапазоне до -40 градусов или более +60 градусов это может привести к снижению производительности и деградационным потерям. Эти ограничивающие аспекты снижают значение водорода в качестве топлива, ограничивая свободу потребителей и увеличивая зависимость от погодных условий. Должен быть новый материал для хранения, легкий, способный удерживать высокое давление и объем, способный контролировать тепло и экономичный.
В случае транспортных трубопроводов этот газ выигрывает конкуренцию как наиболее эффективный вид благодаря своим экономическим аспектам. Однако диффузионные потери при транспортировке сильно влияют на продукт и остаются технической проблемой. Прогресс в развитии этой технологии передачи является важным продвижением к водородной экономике.
Получение из углеводородов
Получение водорода из угля и воды является наиболее часто используемым способом, учитывая тот факт, что электролиз является очень дорогостоящим методом получения этого чистого материала. Обилие угля в мире обеспечивает необходимую энергию для разделения воды на кислород и водород по экономически эффективной цене. Производство водорода – это хорошо зарекомендовавшая себя технология, при которой O2 или пар пропускается через уголь для получения смеси H2, CO и CO2, из которой отделяется H2.
С помощью ядерной энергии
Ядерная энергия при производстве водорода может быть использована при нескольких процессах: ядерного парового риформинга природного газа, электролиза воды с использованием ядерной энергии, использования теплоты и большой электроэнергии из ядерного реактора.
С помощью ветровой энергии
Использование ветровых технологий для производства водорода с помощью электролиза в настоящее время является заманчивой идеей, поскольку является возобновляемым ресурсом и не загрязняет окружающую среду. Этот тип технологии проходит стадию разработки и исследования, где сравниваются и улучшаются эффективность и экономические аспекты производства. Это исследование на данный момент относится только к мелкомасштабному производству. Применение такой технологии еще не достигло коммерческого уровня.
Новое чистое топливо
Постоянные и непрерывные усилия предпринимаются учеными на пути поиска нового чистого топлива.
Много сделано открытий и разработок в области производства, транспортировки и хранения этого чистого газа.
Значение водорода также в том, что он может предоставить человечеству необходимую энергию для выживания и прогресса в гармонии с природой. Эти усилия будут по-прежнему предприниматься на универсальном пути обеспечения устойчивости в интересах нынешнего и будущих поколений.
Водород был предложен в качестве топлива, которое несет в себе эти качества, чтобы противостоять двум самым большим экологическим опасностям, с которыми сталкивается человечество, а именно изменению климата и загрязнению воздуха.
Поэтому, несмотря на нынешние проблемы, с которыми сталкивается водородная технология, этот газ доказал, что он может стать катализатором сдвига наших нынешних экологических, социальных и экономических реалий в неисследованное устойчивое и более справедливое будущее сосуществования человека с природой.