В каких веществах содержится водород и кислород

В каких веществах содержится водород и кислород thumbnail

В каких веществах содержится водород и кислород

Водород

Водород — самый распространённый химический элемент во Вселенной. Именно он составляет основу горючего вещества Звёзд.

Водород — первый химический элемент Периодической системы Менделеева. Его атом имеет простейшее строение: вокруг элементарной частицы «протон» (ядро атома) вращается один-единственный электрон:

Природный водород состоит из трех изотопов: протий 1Н, дейтерий 2Н и тритий 3Н.

Задание 12.1. Укажите строение ядер атомов этих изотопов.

Имея на внешнем уровне один электрон, атом водорода может проявлять единственно возможную для него валентность I:

Вопрос. Образуется ли завершённый внешний уровень при приёме атомом водорода электронов?

Таким образом, атом водорода может и принимать, и отдавать один электрон, т. е. является типичным неметаллом. В любых соединениях атом водорода одновалентен.

Простое вещество «водород» Н2 — газ без цвета и запаха, очень лёгкий. Он плохо растворим в воде, но хорошо растворим во многих металлах. Так, один объём палладия Рd поглощает до 900 объёмов водорода.

Схема (1) показывает, что водород может быть и окислителем, и восстановителем, реагируя с активными металлами и многими неметаллами:

Задание 12.2. Определите, в каких реакциях водород является окислителем, а в каких — восстановителем. Обратите внимание, что молекула водорода состоит из двух атомов.

Смесь водорода и кислорода является «гремучим газом», поскольку при поджигании её происходит сильнейший взрыв, который унёс многие жизни. Поэтому опыты, в которых выделяется водород, нужно выполнять подальше от огня.

Чаще всего водород проявляет восстановительные свойства, что используется при получении чистых металлов из их оксидов*:

* Аналогичные свойства проявляет алюминий (см. урок 10 — алюминотермия).

Разнообразные реакции происходят между водородом и органическими соединениями. Так, за счёт присоединения водорода (гидрирование) жидкие жиры превращаются в твёрдые (подробнее урок 25).

Водород можно получить разными способами:

  • Взаимодействием металлов с кислотами:

Задание 12.3. Составьте уравнения таких реакций для алюминия, меди и цинка с соляной кислотой. В каких случаях реакция не идет? Почему? В случае затруднения см. уроки 2.2 и 8.3;

  • Взаимодействие активных металлов с водой:

Задание 12.4. Составьте уравнения таких реакций для натрия, бария, алюминия, железа, свинца. В каких случаях реакция не идёт? Почему? В случае затруднений см. урок 8.3.

В промышленных масштабах водород получают электролизом воды:

а также при пропускании паров воды через раскалённые железные опилки:

Водород — самый распространённый элемент Вселенной. Он составляет бОльшую часть массы звёзд и участвует в термоядерном синтезе — источнике энергии, которую эти звёзды излучают.

Кислород

Кислород — самый распространённый химический элемент нашей планеты: более половины атомов Земной коры приходится на кислород. Вещество кислород О2 составляет около 1/5 нашей атмосферы, а химический элемент кислород — 8/9 гидросферы (Мирового океана).

В Периодической системе Менделеева кислород имеет порядковый номер 8 и находится в VI группе второго периода. Поэтому строение атома кислорода следующее:

Имея на внешнем уровне 6 электронов, кислород является типичным неметаллом, т. е. присоединяет два электрона до завершения внешнего уровня:

Поэтому кислород в своих соединениях проявляет валентность II и степень окисления –2 (за исключением пероксидов).

Принимая электроны, атом кислорода проявляет свойства окислителя. Это свойство кислорода исключительно важно: процессы окисления происходят при дыхании, обмене веществ; процессы окисления происходят при горении простых и сложных веществ.

Горение — окисление простых и сложных веществ, которое сопровождается выделением света и теплоты. В атмосфере кислорода горят или окисляются почти все металлы и неметаллы. При этом образуются оксиды:

* Точнее, Fe3O4.

При горении в кислороде сложных веществ образуются оксиды химических элементов, входящих в состав исходного вещества. Только азот и галогены выделяются в виде простых веществ:

Вторая из этих реакций используется как источник тепла и энергии в быту и промышленности, так как метан CH4 входит в состав природного газа.

Кислород позволяет интенсифицировать многие промышленные и биологические процессы. В больших количествах кислород получают из воздуха, а также электролизом воды (как и водород). В небольших количествах его можно получить разложением сложных веществ:

Задание 12.5. Расставьте коэффициенты в приведенных здесь уравнениях реакций.

Вода

Воду нельзя ничем заменить — этим она отличается практически от всех других веществ, которые встречаются на нашей планете. Воду может заменить только сама вода. Без воды нет жизни: ведь жизнь на Земле возникла тогда, когда на ней появилась вода. Жизнь зародилась в воде, поскольку она является естественным универсальным растворителем. Она растворяет, а значит, измельчает все необходимые питательные вещества и обеспечивает ими клетки живых организмов. А в результате измельчения резко возрастает скорость химических и биохимических реакций. Более того, без предварительного растворения невозможно протекание 99,5 % (199 из каждых 200) реакций! (См. также урок 5.1.)

Известно, что взрослый человек в сутки должен получать 2,5–3 л воды, столько же выводится из организма: т. е. в организме человека существует водный баланс. Если он нарушается, человек может просто погибнуть. Например, потеря человеком всего 1–2 % воды вызывает жажду, а 5 % — повышает температуру тела вследствие нарушения терморегуляции: возникает сердцебиение, возникают галлюцинации. При потере 10 % и более воды в организме возникают такие изменения, которые уже могут быть необратимы. Человек погибнет от обезвоживания.

Читайте также:  Соматотропин в каких препаратах содержится

Вода — уникальное вещество. Её температура кипения должна составлять –80 °C (!), однако равна +100 °C. Почему? Потому что между полярными молекулами воды образуются водородные связи:

Поэтому и лёд, и снег — рыхлые, занимают больший объём, чем жидкая вода. В результате лёд поднимается на поверхность воды и предохраняет обитателей водоёмов от вымерзания. Свежевыпавший снег содержит много воздуха и является прекрасным теплоизолятором. Если снег покрыл землю толстым слоем, то и животные и растения спасены от самых суровых морозов.

Кроме того, вода имеет высокую теплоёмкость и является своеобразным аккумулятором тепла. Поэтому на побережьях морей и океанов климат мягкий, а хорошо политые растения меньше страдают от заморозков, чем сухие.

Без воды в принципе невозможен гидролиз, химическая реакция, которая обязательно сопровождает усвоение белков, жиров и углеводов, которые являются обязательными компонентами нашей пищи. В результате гидролиза эти сложные органические вещества распадаются до низкомолекулярных веществ, которые, собственно, и усваиваются живым организмом (подробнее см. уроки 25–27). Процессы гидролиза были нами рассмотрены в уроке 6. Вода реагирует со многими металлами и неметаллами, оксидами, солями.

Задание 12.6. Составьте уравнения реакций:

  1. натрий + вода →
  2. хлор + вода →
  3. оксид кальция + вода →
  4. оксид серы (IV) + вода →
  5. хлорид цинка + вода →
  6. силикат натрия + вода →

Изменяется ли при этом реакция среды (рН)?

Вода является продуктом многих реакций. Например, в реакции нейтрализации и во многих ОВР обязательно образуется вода.

Задание 12.7. Составьте уравнения таких реакций.

Выводы

Водород — самый распространённый химический элемент во Вселенной, а кислород — самый распространённый химический элемент на Земле. Эти вещества проявляют противоположные свойства: водород — восстановитель, а кислород — окислитель. Поэтому они легко реагируют друг с другом, образуя самое удивительное и самое распространённое на Земле вещество — воду.

Источник

характеристика водорода и кислорода

подготовка и производство водорода и кислорода

использование водорода и кислорода

вода

перекись водорода

1)Водород — первыйэлементПериодическойсистемы (1-йпериод, порядковыйномер 1). Втаблицахусловнопомещаетсяв главную подгруппу I и VII группы, так как может проявлять восстановительные свойства щелочных металлов, так и окислительные свойства галогенов. Молекула водорода состоит из двух атомов и образована ковалентной неполярной связью. Атомводороданаименьшийпоразмерамисамыйлегкийсредиатомоввсехэлементов. Водород почти не растворим в воде,проявляетамфотерныесвойства — металлическиеинеметаллические. Образуетсоединениясовсемиэлементами, кроме гелия, неонаи аргона, входитвсоставмногочисленныхоксидов, гидроксидов, солейкислородсодержащихкислот. Жизненноважныйэлементдлявсехорганизмов, содержитсявбольшинствеорганическихвеществ, участвуетвомногихбиохимическихпроцессах, обеспечивающихразвитиеифункционированиежизни.

В космосе водород является самым распространенным элементом. Наше солнце более чем наполовину состоит из водорода. На этой звезде, как и на многих других, из ядер атомов водорода образуются ядра атомов гелия и других химических элементов. На Земле водород содержится в виде соединений, важнейшим из которых является вода. В лаборатории водород можно получить реакцией замещения водорода в соляной или серной кислотах на цинк. Можно использовать и другие металлы, которые в ряду активности стоят слева от водорода.

В промышленности водород применяется во многих сферах, например водород используется в качестве ракетного топлива, применяется при производстве маргарина. Реакции с водородом используют для получения различных веществ, таких как аммиак, соляная кислота, вольфрам и так далее.

2) Кислород – самый распространенный элемент на нашей планете, вторая по количеству и первая по значению для жизни составляющая часть воздушной оболочки Земли. Входит в состав многочисленных минералов твердой оболочки земной коры – литосферы. Кислород существует в форме О2, это газ без цвета и запаха. В жидком состоянии имеет светло-голубую окраску, в твердом – синюю. Кислород взаимодействует почти со всеми простыми веществами, кроме галогенов, благородных газов, золота и платиновых металлов. Реакции металлов и неметаллов с кислородном протекают с выделением большого количества теплоты и сопровождаются воспламенением. Почти все реакции с участием кислорода экзотермические, кроме реакции азота с кислородом, эта реакция эндотермическая. Кислород окисляет не только простые, но и сложные вещества, при этом образуются оксиды элементов, из которых они образованы. Высокая окислительная способность кислорода лежит в основе горения всех видом топлива. Кислород также участвует в процессах дыхания и медленного окисления пищи в нашем организме, которое является источником энергии, за счет которого живет организм. Кислород способен образовывать с гемоглобином соединения, в результате которых образуется оксигемоглобин, который в свою очередь доставляет во все ткани и клетки организма кислород, который окисляет белки, жиры и углеводы, образуя при этом оксид углерода и воду и освобождая энергию, необходимую для жизни организма. Растения также поглощают атмосферный кислород. Но если в темноте идет только процесс поглощения кислорода, то на свету происходит еще один процесс – фотосинтез, в результате которого растения поглощают углекислый газ и выделяют кислород. Таким образом, содержание кислорода на Земле сохраняется, благодаря жизнедеятельности зеленых растений.

В промышленности кислород получают из жидкого воздуха, а в лаборатории – разложением пероксида водорода в присутствии катализатора — оксида марганца, а так же разложением перманганата калия при нагревании.

Читайте также:  В какой части огурца содержится больше всего нитратов

Кислород применяют в металлургической и химической промышленности для ускорения производственных процессов. Чистый кислород применяют также для получения высоких температур, при газовой сварке или резке металлов. Его используют для жизнеобеспечения на подводных и космических кораблях. В медицине кислород применяют в случаях временного затруднения дыхания.

3) Вода – самоераспространенноевземнойкоревещество. Вода – основагидросферынашейпланеты, крометого, онасодержитсяватмосфере, ввидельдаобразуетполярныешапкиЗемлиивысокогорныеледники, атакжевходитвсоставразличныхгорныхпород. Массоваядоляводывчеловеческоморганизмесоставляетоколо 70 %.Вода – единственноевещество, укоторогововсехтрехагрегатныхсостоянияхестьсвоиособыеназвания. Наличием водородной связи у воды объясняется аномально высокие значения её температур плавления и кипения. Вода способна расширяться при замерзании и имеет максимальную плотность при температуре +4°С. Вода обладает высокими значениями теплоты плавления и теплоты парообразования, которые академик В.И.Вернадский рассматривал, как константы планетарного значения. Вода имеет высокую теплоемкость и высокое поверхностное напряжение. Вода также является главным растворителем не только в живой, но и в неживой природе.

Химические свойства воды:

— Взаимодействует с щелочными и щелочноземельными металлами

— Взаимодействует с основными и кислотными оксидами

— Разлагается под действием света, тока или высоких температур (свыше 1500°С)

— Реагирует со многими оксидами неметаллов

4) Пероксид водорода (перекисьводорода), H2O2 — простейшийпредставительпероксидов.Бесцветнаяжидкость без запаха или со слабым своеобразным запахом, неограниченнорастворимаявводе, спиртеиэфире. Пероксидводородаявляетсяхорошимрастворителем. Изводывыделяетсяввиденеустойчивогокристаллогидрата.Обаатомакислороданаходятсявпромежуточнойстепениокисления−1, чтоиобуславливаетспособностьпероксидоввыступатькаквролиокислителей, такивосстановителей. Пероксидводородаполучаютвпромышленностиприреакциисучастиеморганическихвеществ, вчастности, каталитическимокислениемизопропиловогоспирта. Впромышленныхмасштабахпероксидводородаполучаютэлектролизомсернойкислоты.Применяютрастворперекисиводородавкачестведезинфицирующегосредствадляпромыванийиполосканий. Используется как отбеливатель на текстильном производстве и при изготовлении бумаги. Также используется в качестве пенообразователя при производстве пористых металлов.

5. Struktura, vlastnosti a chování s a p prvků

s – prvky (alkalické kovy, kovy alkalických zemin)

charakteristika, výskyt, výroba, použití, významné sloučeniny (hydroxid sodný, soda,pálené vápno, hašené vápno)

p – prvky ( vzácné plyny, halogeny, chalkogeny, p1-p3)

charakteristika, výskyt, výroba, použití, významné sloučeniny

Источник

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.

История открытия водорода

История открытия водорода

Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor — вода + gennao — рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Физические свойства водорода

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение — довольно сложный и затратный процесс. Критическое давление вещества — 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях — 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо — в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность — 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость — 13,8 спуаз в тех же условиях).

Химические свойства водорода

Химические свойства водорода

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

Читайте также:  В каких продуктах меланин содержатся

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним — на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С — неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух — 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом — исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее — с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

СnН₂n + Н₂ = СnН₂n₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Применение водорода

Применение водорода

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом — в химической, для производства аммиака.

Массовые потребители вещества — производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы — тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

Источник