В каких соединениях содержится азот

В каких соединениях содержится азот thumbnail

В каких соединениях содержится азот

Азот — первый представитель главной подгруппы пятой группы, представитель пниктогенов. Именно поэтому эти элементы называют подгруппой азота. Однако азот имеет ряд особенностей:

  1. Число ковалентных связей, образуемых атомом азота по обменному механизму, не может быть больше 3-х, так как у атома азота на внешнем электронном слое отсутствует d-орбиталь. 
    Электронная конфигурация атома азота: $1s^22s^22p^3$

  2. Атом азота может образовывать ковалентную связь по донорно-акцепторному механизму за счет наличия неподеленной электронной пары на 2s-подуровне. Подробнее эта тема раскрыта в разделе «Валентные возможности азота»

    В каких соединениях содержится азот

Высшая валентность N равна IV.

3. В соединениях с кислородом азот проявляет степени окисления: +1; +2; +3; +4; +5.

 Степени окисления азота в его соединениях

$N^{-3}$

$N^0$

$N^{+1}$$N^{+2}$$N^{+3}$$N^{+4}$$N^{+5}$

$NH_3$

аммиак 

летучее водородное соединение

$N_2$

свободный азот

      $N_2O$       $NO$

низшие оксиды, несолеобразующие

$N_2O_3$  $to$ $NO$ + $NO_2$

неустойчивый кислотный оксид

$NO_2$ $leftrightarrow$ $N_2O_4$ 

кислотный оксид

$2N_2O_5$

→ $4NO_2$ + $O_2$

неустойчивый кислотный оксид

 В воздухе 

$HNO_2$

азотистая кислота

 

$HNO_3$

азотная кислота

$NH_4K$

соли аммония

$Me_xN_y$

нитриды

  

$Me(NO_2)_х$

нитриты

 

$Me(NO_3)_х$

нитраты

История открытия азота

Соединения азота — селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии.

В каких соединениях содержится азот

В 1772 г. Д.Резерфорд, сжигая фосфор и другие в-ва в стеклянном колоколе, показал, что остающийся газ не поддерживает дыхания и горения. Д.Резерфорд назвал его «удушливым воздухом».

В каких соединениях содержится азотК.Шееле назвал этот элемент, извлеченный из воздуха, «дурным воздухом».

В 1787 г. А.Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот». «А» — отсутствие, «зоо» — жизнь. «Безжизненный» — азот.

И не случайно: испытания проводили на лабораторных мышах, помещая их под колпак с азотом, где они погибали. 

                          В каких соединениях содержится азот             В каких соединениях содержится азот

ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА

Входит в состав воздуха: $varphi$ $(N_2)$ = 78%. Также входит в состав других неорганических соединений и состав живой материи. 

Азот

  • немного легче воздуха; плотность 1,2506 $textrm{$кг/м^3$}$ (при н.у.),

  • $t_{textrm{пл.}}$ = — 209,8 $^circ C$, $t_{textrm{кип.}}$ = -195,8 $^circ C$

  • азот сжижается с трудом: плотность жидкого азота 800  $textrm{$кг/м^3$}$.

Жидкий азот используют  для охлаждения различного оборудования и техники; для охлаждения компонентов компьютера при экстремальном разгоне. В химии жидкий азот применяют при работе с вакуумными линиями, для охлаждения веществ и проведения реакций при низких температурах, для создания инертной атмосферы. При этом транспортировка азота осуществляется в сосудах Дьюара:

В каких соединениях содержится азот    В каких соединениях содержится азот

В воде азот менее растворим чем кислород: при 0 $^circ C$ в 1$textrm{$м^3$}$ $H_2O$ растворяется 23,3 г азота.

Азот не поддерживает дыхание и горение; он чрезвычайно инертен. Малая реакционная способность азота обусловлена строением его молекулы.

В каких соединениях содержится азот

N≡N — это самая прочная (из всех двухатомных) молекула. Молекула азота очень устойчива: энергия диссоциации ее на атомы составляет 942,9 кДж/моль, поэтому даже при температуре 3300 $^circС$ степень диссоциации азота составляет 0,1%.

Азот – один из распространенных элементов на Земле.

В каких соединениях содержится азот

— в атмосфере — 4$cdot10^{15}$ тонн по массе и 78% газообразного азота по объёму;

— литосфере – 1,9$cdot10^{-3}$% по массе;

— в живых организмах — 0,3% по массе.

В белке животных и человека — 16–17% азота. В организмах человека и плотоядных животных белок образуется за счёт потребляемых белковых веществ травоядных животных и в растениях. “Жизнь — есть способ существования белковых тел на Земле” — по определению Ф.Энгельса.

СПОСОБЫ ПОЛУЧЕНИЯ АЗОТА 

Промышленные способы: 

Ректификация (разделение) жидкого воздуха:

  • сначала улетучивается  $N_2$ (t$_{textrm{кип.}}$= -196$ ^circ C$);

  • затем $О_2$ (t$_{textrm{кип.}}$ = -183,0 $^circ C$)

Лабораторные способы:

Окислительно-восстановительное разложение некоторых солей аммония:

$NH_4NO_2$ = $N_2$ + $2H_2O$

$(NH_4)_2Cr_2O_7$ = $Cr_2O_3$ + $N_2$ + $4H_2O$

Окисление аммиака и солей аммония:

$4NH_3$ + $3O_2$ = $2N_2$ + $6H_2O$

$8NH_3$+ $3Br_2$ = $N_2$ + $6NH_4Br$

$NaNO_2 + NH_4Cl xrightarrow[]{t, ^circ C} NaCl + N_2 + 2H_2O$

ХИМИЧЕСКИЕ СВОЙСТВА АЗОТА

Молекулярный азот — химически инертное вещество (см.выше строение азота), поэтому легко реагирует только с металлами:

$N_2 + 6Lixrightarrow[]{t_textrm{комн.}}2Li_3N$

Магний горит с образованием не только оксида, но и нитрида магния:

$3N_2 + 6Mg xrightarrow{}2Mg_3N_2$

$N_2 + 2Al xrightarrow{t} 2AlN$

Азот при взаимодействии с металлами проявляет окислительные свойства: образуются нитриды металлов, в которых степень окисления азота равна -3. 

С неметаллами азот реагирует тяжелее: для инициирования и ускорения реакций необходимо применять высокие температуры, искровые электрические разряды, ионизирующее излучение, катализаторы (Fe, Cr, V, Ti и их соединения):

$N_2 + 3H_2 xrightarrow{textrm{ t; кат; Р}}2NH_3$

$3F_2 +  N_2 xrightarrow{textrm{эл. разряд}} 2NF_3$

$Cl_2 +  N_2 ne$

$S$ + $N_2$ $ne$

Реакция горения азота идет при высокой температуре, в электрическом разряде или в присутствии катализатора:

$N_2 + O_2  = 2NO     -Q$

Обратите внимание: реакция эндотермическая!

Азот не реагирует со сложными веществами.

Источник

Азот — неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав
белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в
кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью
азота.

Азот

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма — полуметалл, висмут — металл.

Элементы Va группы

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:

  • N — 2s22p3
  • P — 3s23p3
  • As — 4s24p3
  • Sb — 5s25p3
  • Bi — 6s26p3
Основное и возбужденное состояние азота

При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то
3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Основное и возбужденное состояние атома азота

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух — во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 — индийская селитра, калиевая селитра
  • NaNO3 — чилийская селитра, натриевая селитра
  • NH4NO3 — аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако,
следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Аммиачная селитра

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

Получение азота из сжатого воздуха

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)2 + N2 + H2O

Получение азота из нитрита аммония

Химические свойства

Азот восхищает — он принимает все возможные для себя степени окисления от -3 до +5.

Степени окисления азота

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение
азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

Молекула азота

  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

    N2 + Li → Li3N (нитрид лития)

    N2 + Mg → (t) Mg3N2

    N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

    N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях,
называется нашатырным спиртом.

Аммиак

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение — гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

    NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.

    NH3 + HCl → NH4Cl (хлорид аммония)

    NH3 + HNO3 → NH4NO3 (нитрат аммония)

    Нитрат аммония

  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные
    восстановительные свойства. Его используют для восстановления металлов из их оксидов.

    NH3 + FeO → N2↑ + Fe + H2O

    NH3 + CuO → N2↑ + Cu + H2O

    Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается
    выделением NO.

    NH3 + O2 → (t) N2 + H2O

    NH3 + O2 → (t, кат) NO + H2O

    Горение аммиака

Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода — реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония — NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

    NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

    NH4+ + H2O ⇄ NH4OH + H+

    NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑

    (NH4)2CO3 → (t) NH3↑ + H2O + CO2↑

    NH4NO2 → (t) N2↑ + H2O

    NH4NO3 → (t) N2O↑ + H2O

    (NH4)3PO4 → (t) NH3↑ + H3PO4

    Фосфат аммония

Оксид азота I — N2O

Закись азота, веселящий газ — N2O — обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным
сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Закись азота

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II — NO

Окись азота — NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях — в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа — оксида азота IV — NO2.

NO + O2 → NO2

Оксид азота IV бурый газ

Оксид азота III — N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Оксид азота III

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем
охлаждением полученной смеси газов до температуры — 36 °C.

As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2↑

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислота — HNO2, соли которой называются нитриты (NO2-).
Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV — NO2

Бурый газ, имеет острый запах. Ядовит.

Оксид азота IV

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при
разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Разложение нитратов

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

    NO2 + C → CO2 + N2

    NO2 + P → P2O5 + N2

    Окисляет SO2 в SO3 — на этой реакции основана одна из стадий получения серной кислоты.

    SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам — азотистой HNO2 и азотной HNO3. Реакции с
    водой и щелочами протекают по одной схеме.

    NO2 + H2O → HNO3 + HNO2

    NO2 + LiOH → LiNO3 + LiNO2 + H2O

    Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

    NO2 + H2O + O2 → HNO3

Оксид азота IV

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

азотИстория открытия азота.

В 1772 г. Д. Резерфорд установил, что воздух, оставшийся под колпаком, где жила мышь, после сжигания в нем фосфора не поддерживает горения и дыхания. Этот газ он назвал «ядовитым воздухом». В этом же году Д. Пристли, получив «ядовитый воздух» иным путем, назвал его «флогистированным воздухом». В 1773 г. К. Шееле, шведский аптекарь из города Штральзунда, установил, что воздух состоит из двух газов, и назвал газ, не поддерживающий горения и дыхания, «дурным или испорченным воздухом». В 1776 г. известный французский ученый А. Лавуазье, подробно исследуя «ядовитый», «флогистированный» и «дурной» воздух, установил тождество между ними. И лет спустя, будучи членом комиссии по выработке новой химической номенклатуры, он предложил назвать эту часть воздуха азотом (от греческих слов «а» — означающего отрицание, и «zoos» — жизнь). Латинское название азота происходит от слова «нитрогениум», что значит «рождающий селитру» («селитрообразователь»). Этот термин введен в науку в 1790 г. Ж. Шапталом.

Нахождение в природе.

Азот вслед за водородом, гелием и кислородом является четвертым по распространенности элементом Солнечной системы. Азот обнаружен в спектрах звезд, в том числе в фотосфере Солнца, в метеоритах, кометах, солнечном ветре и в межзвездных облаках газа. Молекулярный азот наблюдается в атмосферах Венеры и Марса, а аммиак характерен для Юпитера и Сатурна. Во всех космических объектах азот встречается только в восстановленном состоянии.

В земной коре по распространенности азот занимает 20-е место. Подавляющая его часть сосредоточена в следующих основных резервуарах: атмосфере (3,86*1015 т), литосфере (1,7*1015 т), гидросфере (2,2 *1013 т) и биосфере (~ 1010 т). В атмосфере свободный азот в виде молекулярного N2 составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и оксидов.

В литосфере среднее содержание азота составляет 6*10-3 вес. %. Основная масса азота в силикатах находится в химически связанном состоянии в виде NH4+, изоморфно замещающего ион калия в силикатной решетке. Кроме того, в природе встречаются и азотные минералы: нашатырь (NH4C1), выделяющийся из вулканов в довольно больших количествах, баддингтонит (NH4AlSi3O8- *0,5 Н2O) единственный найденный аммониевый алюмосиликат с цеолитной водой. В самых приповерхностных областях литосферы обнаружен ряд минералов, состоящих в основном из нитратных солей. Среди них широко известная селитра (NaNO3), крупные скопления которой характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитра была главным источником связанного азота. (Сейчас основное значение имеет промышленный синтез аммиака из азота воздуха и водорода.) По сравнению с силикатными минералами ископаемое органическое вещество существенно обогащено азотом. Нефть содержит от 0,01 до 2% азота, а каменный уголь — от 0,2 до 3%. Как правило, повышенное содержание азота имеют алмазы (до 0,2%).

В гидросфере среднее содержание азота составляет 1,6- *10-3 вес. %. Основную часть этого азота составляет молекулярный азот, растворенный в воде; химически связанный азот, которого примерно в 25 раз меньше, представлен нитратной и органической формами. В меньших количествах в воде содержится аммиачный и нитритный азот. Концентрация связанного азота в океане примерно в 104 раз меньше, чем в почвах, пригодных для сельскохозяйственного производства.

     Хотя название азота означает «не поддерживающий жизни», на самом деле это необходимый для жизнедеятельности элемент. В растительных организмах его содержится в среднем 3%, в живых организмах до 10% от сухого веса. Азот накапливается в почвах (в среднем 0,2 вес.%). В белке животных и человека среднее содержание азота составляет 16%.

     Между атмосферой, литосферой и биосферой происходит непрерывный обмен, с которым связана и смена химических форм азота. Этот обмен и определяет круговорот азота в природе. Обмен азота между атмосферой и биосферой получил название биохимического цикла азота. Основным процессом движения азота в биосфере является его переход из одной химической формы в другую в замкнутом цикле. Постоянная смена химических форм азота является источником жизни для многих организмов начиная от микроорганизмов и кончая высокоорганизованными формами жизни. Накопленные в почве запасы связанного азота служат источником питания высших растений, откуда связанный азот может поступать и в организмы животных. Растения и животные, отмирая, дают начало органическому азоту, находящемуся главным образом в аминокислотах. В процессе аммонификации органических остатков азот органических соединений переходит в аммонийную (аммиачную) форму. Последняя с помощью микроорганизмов переходит в нитритную форму. При этом выделяется около 70 ккал/молъ. Другая группа микроорганизмов завершает окисление аммиака до нитрата. Полученный в процессе нитрификации нитрат усваивается растениями, и цикл движения азота в биосфере замыкается.

         Главными неорганическими соединениями азота в почвах являются нитрат, аммоний и в редко встречающихся  в природных условиях нитрит. Поведение первых двух компонентов в почве совершенно различно. Если нитрат является легкоподвижным соединением, не сорбируется минералами почвы и остается в растворенном в воде состоянии, то аммоний легко хемосорбируется глинистыми минералами, хотя это не мешает ему в определенных условиях легко окисляться до нитрата. Такое различие в подвижности нитрата и аммония предопределяет источники азотного питания растений. С энергетических позиций аммонийная форма азота более предпочтительна, так как валентность азота в ней одинакова с валентностью азота в аминокислотах.

     Нитратная форма служит основным источником азотного питания растительности в силу своей подвижности, несмотря на необходимость траты дополнительной энергии, связанной с восстановлением нитрата растением.

Неиспользованные живым веществом запасы химически связанного азота под действием микроорганизмов непрерывно преобразовываются в формы, доступные для азотного питания растений. Так, фиксированный глинистыми минералами аммоний окисляется до нитратов. В определенных условиях при отсутствии свободного кислорода и наличии неиспользованного живым веществом нитрата может происходить обусловленное процессом денитрификации восстановление азота до молекулярного с уходом последнего в атмосферу.

Количества азота, выведенные денитрифицирующими бактериями из биосферы, компенсируются процессами фиксации азота из атмосферы азотфиксирующими бактериями. Последние подразделяются на две группы: живущие самостоятельно и живущие в симбиозе с высшими растениями или с насекомыми. Первая группа бактерий фиксирует примерно 10 кг/га. Симбионты высших растений фиксируют значительно большие количества азота. Так, симбионты бобовых культур фиксируют до 350 кг/га. С осадками выпадает азота порядка нескольких килограммов на гектар.

     В балансе фиксируемого азота все большее значение приобретает искусственно синтезированный аммиак, причем его количество удваивается каждые 6 лет. Уже в ближайшее время это может вызвать дисбаланс между процессами фиксации и денитрификации в биосфере.

       Следует отметить подцикл круговорота аммиака и окислов азота через атмосферу, особенно если учесть, что этот подцикл регулирует масштабы развития биосферы. Источниками атмосферного аммиака служат биохимические процессы в почве и, в первую очередь, аммонификация. Окисляясь, аммиак дает основную массу окислов азота в атмосфере. Получающаяся в процессе денитрификации закись азота ответственна за содержание окислов азота в стратосфере, которые каталитически разрушают озон, защищающий живое вещество биосферы от губительного действия жесткого ультрафиолетового излучения. Таким образом в природе установились определенные пределы развития биосферы.

   Деятельность человека грозит нарушить установившееся равновесие. Так, подсчет показал, что количества окиси азота, выделившиеся при планируемых полетах сверхзвуковых самолетов в стратосфере, будут сравнимы с поступлениями ее из природных источников.Таким образом, завершается цикл движения молекулярного азота через биосферу. В этом геохимическом цикле само существование азотной атмосферы Земли определяется скоростями процессов фиксации и денитрификации. При резком разбалансе этих скоростей азотная атмосфера Земли может исчезнуть всего за несколько десятков миллионов лет.

Помимо атмосферы, биосфера определяет существование и другого крупного резервуара азота в земной коре — литосферы, так как именно взаимодействие живого вещества с молекулярным азотом играет главную роль в процессе круговорота поверхностного азота через земную кору. Небольшая часть накопленного в биосфере связанного азота вместе с осадками увлекается вглубь земной коры. В резко восстановительных условиях из осадочных пород исчезает нитратная форма азота. С увеличением температуры и давления и выходом за границы биосферы реакции превращения органического вещества становятся односторонними и сдвигаются в сторону разрушения органической формы азота. Основной формой связанного азота становится ион аммония. С увеличением степени метаморфизма осадочных пород начинает разрушаться и уходить из пород и аммонийный азот. На высоких ступенях метаморфизма  этот процесс практически заканчивается, а с ним заканчивается  цикл обращения поверхностного азота в земной коре. Время жизни азота в этом цикле составляет около 1 млрд. лет.

Изотопы азота.

Азот — единственный элемент на Земле, у которого наиболее распространенными являются ядра изотопа 14N нечетно-нечетного типа (7 протонов, 7 нейтронов). Содержание 14N и 15N в воздухе составляет  99,634 и 0,366% соответственно.

В верхних слоях атмосферы под действием нейтронов космического излучения 14N превращается в радиоактивный изотоп 14С, на чем основана геохронологическая датировка геологических образцов, содержащих «древний» углерод.

В настоящее время возможно получение химических соединений азота, искусственно обогащенных тяжелым изотопом 15N до 99,9 атомн.%. Обогащенные по 15N образцы используются при исследованиях в биохимии, биологии, медицине, химии и физической химии, физике, в сельском хозяйстве, в технологии и химическом машиностроении, в аналитической химии и т. д.

Источник:      www.chemanalytica.ru

www.chemanalytica.ru  лаборатория химического анализа воды     г.Москва.

Источник