В каких органоидах содержится днк и рнк

В каких органоидах содержится днк и рнк thumbnail

В каких органоидах содержится днк и рнк

В каких органоидах содержится днк и рнк

1. Определение ДНК

Нуклеиновые кислоты представляют собой высокомолекулярные линейные полимеры. Так как содержание нуклеиновых кислот больше всего в ядре, то они получили свое название от латинского слова nucleus («ядро», лат.). Впрочем, нуклеиновые кислоты содержатся не только в ядре, где, безусловно, их больше всего, но и в хлоропластах и митохондриях (рис. 1).

Рис. 1. Органеллы, в которых содержится ДНК

Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).

В каких органоидах содержится днк и рнк

Рис. 2. Нуклеотиды

Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).

В каких органоидах содержится днк и рнк

Рис. 3. Химический состав нуклеотидов

Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).

В каких органоидах содержится днк и рнк

Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3’ и 5’ углеродом атома (рис. 5).

Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты

Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.

2. Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тиминомгуанином и цитозином

В каких органоидах содержится днк и рнк

В каких органоидах содержится днк и рнк

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).

Рис. 9. Лауреаты Нобелевской премии «за создание пространственной модели ДНК»

Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Эти цепи связаны друг с другом азотистыми основаниями. Если «раскрутить» молекулу ДНК, то она будет напоминать винтовую лестницу. Две цепочки – образованы остатками фосфорной кислоты и пентозы, а перекладины «лестницы» – азотистые основания, которые взаимодействуют друг с другом с помощью водородных связей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

3. Третичная структура ДНК

У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).

Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому

У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).

Рис. 11. Модели двухцепочечных ДНК

Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.

Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).

Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)

Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).

Рис. 13. Хромосомы эукариот

В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.

Рис. 14. Третичная структура ДНК

В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.

Рис. 15. Хромосомы человека. Кариотип мужчины

Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.

4. Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

5. История открытия нуклеиновых кислот

В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).

Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.

Рис. 16. Первооткрыватель нуклеиновых кислот

В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.

В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.

Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.

Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.

Читайте также:  Какие еще расходные статьи могут содержаться в государственном бюджете

Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.

Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.

6. Вещество наследственности

Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.

Рис. 17. Опыты Эвери и Гриффитса

Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.

7.РНК. Строение РНК

Рибонуклеиновая кислота (РНК) – полимер, мономерами которой являются рибонуклеотиды. Образование полимера происходит так же, как и у ДНК, за счет фосфодиэфирной связи между остатком фосфорной кислоты и рибозой.

В каких органоидах содержится днк и рнк

Мономеры РНК в составе нуклеотидов содержат пятиуглеродный сахар (пентоза), фосфорную кислоту (остаток фосфорной кислоты) и азотистое основание (см. Рис. 2).

Рис. 2. Строение нуклеотида РНК

Азотистые основания РНК – урацил, цитозин, аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой (см. Рис. 2).

РНК – одноцепочная молекула значительно меньших размеров, чем молекула ДНК.

Молекула РНК содержит от 75 до 10 000 нуклеотидов.

РНК-содержащие вирусы

Рис. 3. РНК-содержащий вирус

Многие вирусы, например вирус гриппа, содержат в качестве единственной нуклеиновой кислоты молекулу РНК (см. Рис. 3). РНК-содержащих вирусов, болезнетворных для человека, больше, чем ДНК-содержащих. Они вызывают полиомиелит, гепатит А, острые простудные заболевания.

Арбовирусы – вирусы, которые переносятся членистоногими. Являются возбудителями клещевого и японского энцефалита, а также желтой лихорадки.

Реовирусы (см. Рис. 4), редкие возбудители респираторных и кишечных заболеваний человека, стали предметом особого научного интереса из-за того, что их генетический материал представлен в виде двухцепочной молекулы РНК.

Рис. 4. Строение реовируса

Также существуют ретровирусы, которые вызывают ряд онкологических заболеваний.

8.Типы РНК

В зависимости от строения и выполняемой функции различают три основных типа РНК: рибосомную, транспортную и информационную (матричную).

В каких органоидах содержится днк и рнк

1. Информационная РНК

Как показали исследования, информационная РНК составляет 3-5 % от общего содержания РНК в клетке. Это одноцепочная молекула, которая образовывается в процессе транскрипции на одной из цепей молекулы ДНК. Это связано с тем, что ДНК у ядерных организмов находятся в ядре, а синтез белка происходит на рибосомах в цитоплазме, поэтому возникла необходимость в «посреднике». Функцию «посредника» выполняет матричная РНК, она передает информацию о структуре белка из ядра клеток, где находится ДНК, к рибосомам, где эта информация реализуется (см. Рис. 5).

Рис. 5. Матричная РНК (мРНК)

В зависимости от объема копируемой информации, молекула матричной РНК может иметь различную длину.

Большинство матричных РНК существуют в клетке непродолжительное время. В бактериальных клетках существование таких РНК определяется минутами, а в клетках млекопитающих (в эритроцитах) синтез гемоглобина (белка) продолжается после утраты эритроцитами ядра в течение нескольких дней.

2. Рибосомная РНК

Рибосомные РНК (см. Рис. 6) составляют 80 % от всех рибосом, присутствующих в клетке. Эти РНК синтезируются в ядрышке, а в клетке они находятся в цитоплазме, где вместе с белками образуют рибосомы. На рибосомах происходит синтез белка. Здесь «код», заключенный в матричную РНК, транслируется в аминокислотную последовательность молекулы белка.

Рис. 6. Рибосомная РНК (рРНК)

3. Транспортная РНК

Транспортные РНК (см. Рис. 7) образуются в ядре на ДНК, а затем переходят в цитоплазму.

Рис. 7. Транспортная РНК (тРНК)

На долю таких РНК приходится около 10 % от общего содержания РНК в клетке. Они имеют самые короткие молекулы из 80-100 нуклеотидов.

Транспортные РНК присоединяют к себе аминокислоту и транспортируют ее к месту синтеза белка, к рибосомам.

Все известные транспортные РНК за счет комплементарного взаимодействия между азотистыми основаниями образовывают вторичную структуру, по форме напоминающую лист клевера (см. Рис. 8). В молекуле тРНК есть два активных участка – триплет антикодон на одном конце и акцепторный участок, присоединяющий аминокислоту, на другом.

Рис. 8. Строение тРНК («клеверный лист»)

Каждой аминокислоте соответствует комбинация из трех нуклеотидов, которая носит название триплет.

Рис. 9. Таблица генетического кода

Кодирующие аминокислоты триплеты – кодоны ДНК (см. Рис. 9) – передаются в виде информации триплетов (кодонов) мРНК. У верхушки клеверного листа тРНК располагается триплет нуклеотидов, который комплементарен соответствующему кодону мРНК (см. Рис. 10). Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносятся данной тРНК. Он получил название антикодон.

Рис. 10. тРНК

Акцепторный конец является «посадочной площадкой» для определенной аминокислоты.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Гипотеза РНК мира

Концепция РНК мира заключается в том, что когда-то очень давно молекула РНК могла выполнять функцию как молекулы ДНК, так и белков.

В живых организмах практически все процессы происходят благодаря ферментам белковой природы. Белки, однако, не могут самореплицироваться и синтезируются в клетки на основании информации, заложенной в ДНК. Но и удвоение ДНК происходит только благодаря участию белков и РНК. Следовательно, образуется замкнутый круг, из-за которого в рамках теории возникновения жизни спонтанное возникновение такой сложной системы маловероятно.

В начале 1980-х годов в лаборатории ученых Чека и Олтмена (обладатели нобелевской премии по химии) в США была открыта каталитическая способность РНК. РНК-катализаторы были названырибозимами (см. Рис. 11).

Читайте также:  В каких овощах и фруктах содержится витамины для кожи

Рис. 11. Структура рибозимомолекулы РНК, выполняющей функцию катализа

Оказалось, что активный центр рибосом тоже содержит большое количество рибосомных РНК. Также РНК способны создавать двойную цепочку и самореплицироваться. То есть РНК могли существовать полностью автономно, катализируя метаболические реакции, например синтеза новых рибонуклеатидов, и самовоспроизводясь, сохраняя из поколения в поколение каталитические свойства. Накопление случайных мутаций привело к появлению РНК, катализирующих синтез определенных белков, являющихся более эффективными катализаторами, в связи с чем эти мутации закреплялись в ходе естественного отбора. Также возникли специализированные хранилища генетической информации – молекула ДНК, а РНК стала посредником между ДНК и белками.

Источник

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

строение ДНК

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основаниеНазвание нуклеотидаОбозначение
АденинАдениловыйА (A)
ГуанинГуаниловыйГ (G)
ТиминТимидиловыйТ (T)
ЦитозинЦитидиловыйЦ (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3′-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5′-углеродом (его называют 5′-концом), другой — 3′-углеродом (3′-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3′-конца одной цепи находится 5′-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

Репликация ДНК

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3′-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3′-конца к 5′-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3’–5′ синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5’–3′ — прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Читайте также:  Какие микроэлементы содержаться в моркови

Купить проверочные работы
по биологии

Биология. Растения. Бактерии. Грибы. Лишайники. Работаем по новым стандартам. Проверочные работы   Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы   Биология. Общие закономерности. Работаем по новым стандартам. Проверочные работы

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

транспортная РНК

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

  • Перейти к лекции №3 «Строение и функции белков. Ферменты»

  • Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

  • Смотреть оглавление (лекции №1-25)

Источник