В каких марках стали содержится марганец

В каких марках стали содержится марганец thumbnail

Теоретические основы металлургического производства

Металлический марганец очень хрупок, поэтому в чистом виде он имеет ограниченное применение. В основном он используется для получения сплавов, важнейшим из которых является сталь.

Марганец как раскислитель в количестве 0,25 – 0,5% содержится в кипящей, полуспокойной и спокойной стали почти всех марок.

В кипящей стали марганец обычно является единственным раскислителем. Раскислительная способность марганца относительно не высока, но обычно бывает достаточной для раскисления кипящей стали. При наличии в металле кремния, алюминия, титана и других сильных раскислителей присутствие в расплаве указанного количества марганца не оказывает существенного влияния на его окисленность.

Основное положительное влияние марганца состоит в уменьшении вредного влияния на свойства стали серы. Марганец, имея высокое химическое сродство к сере, образует сульфид MnS, который при кристаллизации металла выделяется из раствора в виде тугоплавких, хаотически расположенных включений. Для выделения серы из металла в виде сульфидов марганца отношение концентраций марганца и серы в стали должно отвечать условию [Mn]/[S] > 20 – 22.

Марганец является одним из самых дешевых и распространенных легирующих элементов.

Марганец расширяет область устойчивого существования В каких марках стали содержится марганец-Fe, т.е. повышает устойчивость аустенита и увеличивает степень его переохлаждения. Благодаря этому наличие в стали марганца резко уменьшает критическую скорость закалки. Поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая.

Растворяясь в феррите, марганец повышает прочностные характеристики стали (пределы прочности и текучести), особенно при содержании углерода 0,1 – 0,5%. Но при этом несколько уменьшается пластичность металла (относительное удлинение и ударная вязкость).

Повышая износостойкость и упругость металла, марганец широко применяется для легирования конструкционных, пружинно-рессорных, износостойких и других марок стали.

Чаще всего применяются низко- (0,8 – 1,8% Mn) и высоколегированные (10 – 15% Mn) стали, в которых в качестве легирующего элемента могут присутствовать также хром, никель и др. Марганец в легированных сталях часто является заменителем более дорогого и дефицитного никеля.

В конструкционных сталях марганец может быть единственным легирующим элементом (0,8 – 1,8%), но значительно чаще используется легирование металла марганцем в сочетании с кремнием, хромом и другими элементами.

Из высоколегированных сталей наиболее широкое распространение получила сталь 110Г13Л или сталь Гатфильда (1,0 – 1,2% C, 12 – 14% Mn). Этот металл обладает высокой износостойкостью, благодаря высокой вязкости и пластичности внутренних слоев металла при высокой твердости поверхностного слоя. Она используется для изготовления деталей, работающих в условиях ударно-адразивного изнашивания: зубья ковшей экскаваторов, шары шаровых мельниц и др. Сталь Гатфильда плохо поддается обработке давлением и резанием, поэтому изделия из нее в основном получают в литом виде.

В некоторых марках стали марганец является нежелательной примесью. Наличие в структуре металла карбидов марганца уменьшает пластичность стали, особенно при комнатной температуре. Поэтому, например, в низкоуглеродистой стали, предназначенной для получения изделий методом глубокой штамповки без нагрева (автомобильные кузова и др.) и в стали для изготовления канатов содержание марганца не должно превышать 0,2 – 0,3%.

РЕКЛАМА НА САЙТЕ

КНИГИ ПО МЕТАЛЛУРГИИ

В каких марках стали содержится марганец

В каких марках стали содержится марганец

Источник

Марганец в стали считается легирующим компонентом при содержании его более 1,0%, а кремний — при содержании более 0,8%.
[c.57]

Легирование материалов алюминиевой заготовки кремнием, марганцем и другими элементами, а стали — ванадием, титаном, кремнием и никелем повышает энергию активации реакционной диффузии. Их влияние связано с затруднением образования зародышей в промежуточной фазе. Противоположное влияние оказывают углерод и марганец в стали. Повышенное содержание в определенных пределах в стали свободного кислорода и азота ведет к росту температуры начала образования интерметаллидов. Возникновение интерметаллидного слоя для каждой температуры начинается после некоторого критического времени, т.е. имеет место латентный период То, по прошествии которого интенсивно образуются интерметаллиды. Его зависимость от температуры можно записать так
[c.187]

Если в обозначении марки стали рядом с числом стоит буква Г (например 65Г), это означает, что в стали содержится марганец.
[c.186]

Для получения в стали более 0,7% Мп последний следует вводить в нее в количествах сверх требуемого по технологии выплавки. Поэтому, апример, сталь с 1,0% Мп является уже легированной марганцовистой сталью, а марганец такой концентрации считается легирующим элементом.
[c.342]

Марганец образует твердый раствор с железом и немного повышает твердость и прочность феррита. В присутствии серы он частично связывается с серой в сернистый марганец и переходит в шлак. При содержании марганца более 1,5 % снижаются пластические свойства стали. В сталях содержится обычно пе более 0,4 % Si и 0,8 % Мп.
[c.15]

Читайте также:  В каких продуктах содержится меланин список

Легирующие элементы, повышая устойчивость аустеиита, резко снижают критическую скорость закалки. Так, при введении 1 % Сг в сталь с 1 % С критическая скорость закалки уменьшается в 2 раза, а при введении 0,4 % Мо от 200 до 50 С/с.Сильно снижают критическую скорость закалки марганец и никель и в меньшей степени вольфрам. Для многих легированных сталей критическая скорость закалки снижается до 20—30 С с и более. Кобальт является единственным легирующим элементом, понижающим устойчивость аустенита и повышающим критическую скорость закалки.
[c.183]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.
[c.48]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря на то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или водород, решающую роль в превращении железа в сталь играет именно углерод [37]. Например, для стали У7А (содержание углерода 0,63- 0,73 %) предел прочности при растяжении 650 МПа, относительное удлинение 18 %, в отожженном состоянии НВ 180 [15].
[c.66]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря ка то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или во-
[c.240]

Марганец является важнейшим из постоянных примесей элементом. Его вводят в сталь для раскисления, которое идет по следующей реакции
[c.42]

Марганец обнаруживается в стали в виде сернистого марганца MnS. При нагревании стали он способствует росту зерна аустени-та. Прокаливаемость стали при наличии марганца увеличивается. Даже в небольших количествах марганец вызывает некоторое по-
[c.42]

Кремний является вторым по важности из постоянных примесей элементом. Как и марганец, его вводят в сталь для раскисления. Раскисление идет по следующей реакции
[c.43]

Хром, никель, кремний и марганец добавляют в сталь для повышения твердости и жаростойкости.
[c.57]

Согласно ГОСТ 4543—71 в обозначении марок конструкционной легированной стали первые две цифры указывают среднее содержание углерода в сотых долях процента, буквы за цифрами означают Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после буквы указывают примерное процентное содержание легирующего элемента в целых единицах отсутствие цифр означает, что в стали содержится до
[c.49]

Углеродистая и легированная сталь. Углеродистая сталь является сложным, многокомпонентным сплавом, в котором помимо двух его основных элементов (железа и углерода) присутствуют в небольшом количестве такие элементы, как кремний, марганец, сера, фосфор И др. Обычная углеродистая сталь содержит до 16 различных элементов, эти элементы подпадают в сталь на различных стадиях процесса ее производства.
[c.261]

По содержанию углерода эти стали делят на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,25 — 0,6 % С) и высокоуглеродистые (0,6—, 3 %С). Кроме железа и углерода в стали содержится марганец (до 0,8 %), кремний (до 0,4 %) и такие вредные примеси, как сера (до 0,05 %) и фос( юр (до 0,04 %).
[c.220]

Углеродистые стали. Углеродистые стали занимают левую часть диаграммы состояний на рис. 1.12. Пользуясь этой диаграммой для оценки свойств отожженных, т. е. находящихся в равновесном фазовом состоянии сталей, надо помнить отличия химического состава их фаз — феррита и цементита — и металлургические дефекты, которые привносятся в них при выплавке и которые влияют на их механические и другие свойства. Марганец и кремний, попадающие в сталь из чугуна, а также вводимые в нее дополнительно при раскислении, растворяются в феррите, а марганец — в цементите. Благодаря этому при сохраняющейся пластичности несколько возрастают прочность и твердость стали (пластичность и вязкость снижаются при более высоком, чем примесное, содержании Мп и Si).
[c.29]

Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).
[c.66]

Читайте также:  Какое знание содержится в посылках ответ

Наиболее распространенными примесями замещения в сталях являются хром, марганец, кремний, никель и молибден. Реже встречаются ванадий, алюминий, титан и кобальт. Кратко сформулируем основные выводы о влиянии этих элементов на охрупчивание под воздействием среды, а затем перейдем к более детальному обсуждению.
[c.53]

Определение марганца [20, 11, 7, 13, 2] Марганец в стали и в чугуне находится преимущественно в виде карбида, например МпдС простого или двойного с цементитом и частично в твёрдом растворе в феррите часть его образует сульфиды, например Мп5.
[c.95]

Основной потребитель марганца — черная металлургия расходует в среднем 8—9 кг марганца на 1 т выплавленной стали. Вводят марганец в сталь в виде ферромарганца (70—80% Мп, 0,5—0,7% С, остальное железо и примеси). Выплавляют ферромарганец в доменных и электрических печах. Высокоуглеродистый ферромарганец применяют для раскисления и десульфурации средне- и низкоуглероди-стый — для легирования стали.
[c.9]

Присутствие в стали хрома, кремния, алюминия благоприятствует образованию вязких окислов, прочно связывающихся с поверхностью металла. Марганец в стали помогает образованию легко отделяющихся пленок окислов. Чем больше закиси (РеО) в окислах, тем прочнее эти окислы связываготся с металло.м.
[c.117]

Жидкотекучесть изменяется в зависимости от содержания элементов, Зходящих в состав сплава. Марганец в стали увеличивает жидкотекучесть, особенно при большом содержании его. Высокомарганцовые стали вследствие этого обладают хорошей жидкотекучестью. Кремний, содержащийся в стали в количестве до 1%, снижает жидкотекучесть. При увеличении содержания кремния более 1% жидкотекучесть улучшается. Высококремнистые стали обладают лучшей жидкотекучестью, чем углеродистые. Алюминий резко снижает жидкотекучесть стали, поэтому его применение должно увязываться с условиями разливки стали по формам и с качеством отливок. Сера ухудшает жидкотекучесть стали, а фосфор улучшает. Хром, содержащийся в стали в количестве до 1,0%, снижает ее жидкотекучесть, но дальнейшее увеличение содержаиия хрома не снижает жидкотекучесть, а, начиная с 5% Сг, увеличивает ее. Никель в количестве до 0,5% ухудшает жидкотекучесть стали. Дальнейшее увеличение содержания никеля отрицательно не сказывается на жидкотекучести. Медь улучшает жидкотекучесть стали. У алюминиевокремнистых сплавов жидкотекучесть увеличивается с повышением содержания кремния, а магниевых сплавов — алюминия.
[c.56]

Низколегированные конструкционные марганцевистые стали содержат 0,9—1,8% Мп и до 0,5% С. Марганец в стали образует твердый раствор с ферритом и аустенитом, а с углеродом — карбиды. Он зшеличивает прокаливаемость стали, так как придает устойчивость аустениту и снижает критическую точку.
[c.93]

Марганец в сталях находится в виде изоморфного углероду карбида МпзС, поведение которого при нагреве и отпуске мало отличается от поведения цементита РезС.
[c.40]

Легированными называются стали, содержащие специально введенные элементы. Марганец считается легирующим компонентом при содержании его в стали более 0,7% по нижнему пределу, а кремний свыше 0,4%. Поэтому углеродистые стали марок ВСтЗГпс, 15Г и 20Г (табл. 42) с повышенным соде])жапием марганца соответствуют низколегированным конструкционным сталям. Легирующие элементы, вводимые в сталь, вступая во взаимодействие с Ь елезом и углеродом, изменяют ее свойства. Это повы-нгает механические свойства стали и, в частности, сни/кает порог хладноломкости. В результате появляется возможность снизить массу конструкций.
[c.207]

П]1и небольших концентрациях хрома в сталях тепловая вы-дсрж15а при температурах 600—880° С не вызывает появления хрупкой при более низких температурах о-фазы. Содержание более 20—25% Сг вызывает довольно интенсивное выпадение а-фазы. Марганец, молибден и некоторые другие легируюш,ие элементы способны расширять область существования сг-фазы и интенсивность ее образования.
[c.260]

В соответствии со сказанным карбиды в сталях будут образовывать слс-ующие элементы титан, ванадий, хром, марганец, цирконий, ниобий, мо-шбден, гафний, тантал, вольфрам.
[c.353]

Однако в сталях в чистом виде перечисленные карбиды н существуют. Карбиды всех легирующих элементов содержат растворе железо, а при наличии нескольких карбидообразую щих элементов — и эти элементы. Так, в хромомарганцовисто стали вместо чистого карбида хрома СггзСе образуется карбид (Сг, Мп, Ре)2зСб, содержащий в растворе железо и марганец.
[c.354]

Основными легируюихими элементами конструкционных сталей являются хром, никель, кремний и марганец. Вольфрам, молибден, вапмдий, титан, бор и другие легирующие элементы вводят в сталь
[c.254]

Углеродистыми сталями называются сплавы железа с углеродом, содержащие до 2,0% С. Обычная углеродистая сталь, кроме основных элементов (железа и углерода), содержит еще 0,3 -0,7% Мп 0,2 — 0,4% Si 0,01 — 0,05% Р и 0,01 — 0,04% S. Фосфор и сера являются примесями. Марганец и кремний вводят в сталь при ее производстве, а фосс1юр и сера попадают в нее в процессе выплавки непосредственно из руд и являются вредными примесями.
[c.41]

Читайте также:  В каких энергетиках содержится алкоголь

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.
[c.49]

Для улучшения свойств (механических, коррозионных, тепловых и др.) сталей применяют легирующие присадки (в скобках указаны буквенные обозначения присадок в марке стали) вольфрам (В), марганец (Г), медь (Д), молибден (М), никель (Н), бор (Р), кремний (С), титан (Т), хром (X), ванадий (Ф), алюминий (Ю). Процентное содержание в стали легирующих присадок указывают цифрами после буквы (например, сталь 12Х2Н4А содержит в среднем 0,12 % углерода, 2 % хрома и 4 % никеля). По способу производства углеродистые стали подразделяют на стали обыкновенного качества и стали качественные конструкционные, а легированные стали — на качественные, высококачественные (в конце обозначения марки стали содержится буква А, например, ЗОХГСА) и особо высококачественные.
[c.272]

Травйтель 17 [100 мл уксусной кислоты добавка бензидина]. Этот раствор опробовали Глузанов и Криволави [17]. Он позволяет по окраске определять хром в стальных и чугунных образцах, не оказывая влияния на марганец, никель, кобальт, вольфрам, ванадий, молибден, медь, титан и кремний. При обычной технике получения отпечатков хром придает через 10—30 с отпечатку темноватый голубой оттенок. При этом другие легирующие элементы в стали лишь едва растравливаются.
[c.107]

С помощью спектрального анализа с некоторыми ограничениями в стали и чугуне выявляются марганец, хром, медь, ванадий, вольфрам, кобальт, никель, титан и магний. Однако содержание углерода этим методом можно определить лишь для простых углеродистых сталей. Количественного спектрального анализа углерода, фосфора, серы и кремния в легированных сталях не делают, поэтому, если изменяется лишь процентное содержание этих составляющих, стали рассортировать спектральным методом лельзя.
[c.119]

Коррозионностойкие стали — это прежде всего сплавы железа с хромом, содержание которого в стали не менее 12 %. Хром, являющийся элементом, хорошо пассивирующимся в нейтральных и окислительных средах, обусловливает резкое повышение способности к пассивации сплавов железо—хром при содержании его 12 %. Из других легирующих элементов наиболее важным является никель, стабилизирующий аустенитную структуру нержавеющих сталей, обеспечивающий высокие пластичные и технологические свойства и повышение в ряде случаев коррозионных свойств. Заменителем никеля до определенного предела является марганец, стабилизирующий, подобно никелю, аустенитную структуру.
[c.69]

К другим элементам, обычно входящим в состав аустенитных нержавеющих сталей, относятся Мп (1—2 %), С (0,03—0,25%), N (0,02—0,30%) и 51 (1—3%), Р (часто присутствует как загрязняющая примесь). Влияние марганца на стойкость аустенитных сталей против КР может быть различным. Наименее сомнительные эксперименты [66] не показали никакого эффекта. [81], но за пределами обычного диапазона 1—2% наблюдались случаи как положительного, так и отрицательного влияния марганца [66, 68, 69, 82]. Есть данные о том, что при испытаниях во влажных условиях концентрации марганца >3% снижают стойкость против КР [83]. Эксперименты в газообразном водороде при еще более высоком содержании марганца в стали показали явный отрицательный эффект [39, 84]. Добавки марганца, часто предназначенные для замещения никеля, вводятся с целью повышения растворимости азота и, следовательно, потенциальной упрочняемости сплава. Поэтому наблюдаемые эффекты могут быть отчасти связаны с усилением планарности скольжения, вызываемым азотом, как будет показано ниже. Кроме того, марганец повышает ЭДУ в меньшей степени, чем никель. Очевидно, необходимы дополнительные исследования влияния марганца на стойкость аустенитных сталей против как КР, так и водородного охрупчивания.
[c.70]

Источник