В каких клетках содержится клеточный центр

Телофаза митоза (электронная микрофотография). Стрелка указывает на центросому. Четко видны две центриоли, расположенные под прямым углом друг к другу: одна перерезана поперек, другая вдоль.
Клеточный центр, или центросома (от др.-греч. σῶμα — тело) — немембранная органелла в клетках эукариот, состоит из двух центриолей и перицентриолярного материала. Является главным центром организации микротрубочек (ЦОМТ) эукариотической клетки, играет важнейшую роль в клеточном делении, участвуя в формировании веретена деления. Из центросомы образуются реснички и жгутики. Центросомы характерны для клеток животных, их нет у высших растений, у низших грибов и некоторых простейших[1][2]. Ряд наследственных заболеваний человека вызван мутациями в генах, кодирующих центросомные белки[3].
История открытия и изменений наименований[править | править код]
Центросомы на полюсах веретена деления в делящихся клетках практически одновременно описали B. Флемминг, O. Гертвиг и Э. ван Бенеден в середине 70-х годов XIX в. Этим структурам было дано название «центросфера», а гранулы, которые удавалось разглядеть в фокусе центросферы, получили название «полярные корпускулы». Эдвард ван Бенеден и Теодор Бовери независимо друг от друга смогли показать, что центросферы не исчезают по завершению митоза, а сохраняются в интерфазной клетке, часто располагаясь в районе геометрического центра клетки. В 1887 году Эдвард ван Бенеден предложил переименовать центросферы в «центральные корпускулы» или «центральные тельца». В 1888 году Теодор Бовери предложил для этой структуры название «центросома», а позднее в 1895 году — «центриоль». Следует отметить, что многочисленные названия одной структуры породили терминологическую путаницу, а термины «центросома» и «центриоль» до изобретения электронной микроскопии использовали как синонимы[4]. С середины 50-х годов XX века, когда благодаря электронной микроскопии была изучена тонкая структура этой органеллы, название «центриоль» стали ассоциировать с центриолярными цилиндрами. В 1984 году американcкий клеточный биолог Даниэль Мезиа предложил использовать термин «центросома» для обозначения совокупности центриолей и окружающих их структур[5][6].
Строение центросомы[править | править код]
У многих живых организмов (животных и ряда простейших) центросома содержит пару центриолей, цилиндрических структур, расположенных под прямым углом друг к другу. Каждая центриоль образована девятью триплетами микротрубочек, расположенными по кругу, а также ряда структур, образованных центрином, ценексином и тектином.
В интерфазе клеточного цикла центросомы ассоциированы с ядерной мембраной. В профазе митоза ядерная мембрана разрушается, центросома делится, и продукты её деления (дочерние центросомы) мигрируют к полюсам делящегося ядра. Микротрубочки, растущие из дочерних центросом, крепятся другим концом к так называемым кинетохорам на центромерах хромосом, формируя веретено деления. По завершении деления в каждой из дочерних клеток оказывается только по одной центросоме.
Функции центросомы[править | править код]
Центросома играет важнейшую роль в клеточном делении, однако наличие клеточного центра в клетке не является необходимым для митоза[7]. В клетке содержится одна или две центросомы. Аномальное увеличение числа центросом характерно для клеток злокачественных опухолей. Более двух центросом в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур.
Кроме этого, в неделящихся клетках центросомы могут определять полярность клеток. Центросома в неделящихся клетках нередко ассоциирована с аппаратом Гольджи[1].
Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для микротрубочек аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются.
У планарий и, возможно, некоторых других плоских червей нет центросом (однако в клетках, несущих реснички, центриоли образуются).[7]
Примечания[править | править код]
- ↑ 1 2 Ченцов Ю. С. Введение в клеточную биологию / Ю. С. Ченцов. — М: Академкнига, 2005. — С. 402-423. — 495 с.
- ↑ Узбеков Р. Э. , Алиева И. Б. Центросома — клеточный концертмейстер // Природа. — 2007. — № 5.
- ↑ Nigg E. A., Raff J. W. Centrioles, centrosomes, and cilia in health and disease // Cell. — 2009. — Т. 139, № 4. — С. 663-678.
- ↑ Узбеков Р. Э., Алиева И. Б. Центросома — загадка «клеточного процессора» // Цитология. — 2008. — Т. 2. — С. 91-112.
- ↑ Узбеков Р. Э. , Алиева И. Б. Центросома — история изучения и новые открытия. От цитоплазматической гранулы до центрального комплекса внутриклеточной регуляции / Р. Э. Узбеков, И. Б. Алиева. — М: Издательство Московского университета, 2013. — 319 с. — ISBN 978-5-211-06551-2.
- ↑ Rieder C. L., Faruki S., Khodjakov A. The centrosome in vertebrates: more than a microtubule-organizing center // Trends in cell biology. — 2001. — Vol. 11, № 10. — P. 413-419. — PMID 11567874. Архивировано 27 октября 2007 года.
- ↑ 1 2 Juliette Azimzadeh, Mei Lie Wong, Diane Miller Downhour, Alejandro Sánchez Alvarado, Wallace F. Marshall. Centrosome Loss in the Evolution of Planarians (англ.). Science (5 January 2012). doi:10.1126/science.1214457. Архивировано 2 июня 2012 года.
Литература[править | править код]
- Ченцов Ю. С. Введение в клеточную биологию / Ю. С. Ченцов. — М: Академкнига, 2005. — С. 402-423. — 495 с.
- Узбеков Р. Э. , Алиева И. Б. Центросома — история изучения и новые открытия. От цитоплазматической гранулы до центрального комплекса внутриклеточной регуляции / Р. Э. Узбеков, И. Б. Алиева. — М: Издательство Московского университета, 2013. — 319 с. — ISBN 978-5-211-06551-2.
Центрио́ль — внутриклеточная органелла эукариотической клетки. Размер центриоли находится на границе разрешающей способности светового микроскопа.
Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках (например, эпителия) центриоли часто определяют полярность клеток и располагаются вблизи комплекса Гольджи.
Строение[править | править код]
Термин был предложен Теодором Бовери в 1895 году. Тонкое строение центриолей удалось изучить с помощью электронного микроскопа. В некоторых объектах удавалось наблюдать центриоли, обычно расположенные в паре (диплосома), и окруженные зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросфера). Совокупность центриолей и центросферы называют клеточным центром.
Чаще всего пара центриолей лежит вблизи ядра. Каждая центриоль построена из 27 цилиндрических элементов (тубулиновых микротрубочек), сгруппированных в 9 триплетов. Эти триплеты расположены по окружности, образуя полый цилиндр. Его длина — 0,3–0,5 мкм (равна длине каждого триплета), а диаметр — около 0,15 мкм. В каждом триплете первая микротрубочка (А-микротрубочка) имеет диаметр около 25 нм, толщину стенки 5 нм и состоит из 13 протофиламентов. Вторая и третья микротрубочки (B и C) отличаются от A-микротрубочки тем, что они являются неполными, содержат 11 протофиламентов и вплотную примыкают к своим соседям. Каждый триплет располагается к радиусу такого цилиндра под углом около 40°.
Функции[править | править код]
Центриоли всегда бывают расположены в материале, не имеющем чётко выраженной структуры, который инициирует развитие микротрубочек. Эту область клетки называют центросомой. Именно она образует веретено деления, а не центриоли. Это позволяет объяснить тот факт, почему растения и грибы, не имеющие центриолей, способны образовывать веретено. Функция центриолей остаётся неизвестной. Возможно, они участвуют в ориентации веретена согласно полюсам, к которым будет происходить деление клетки (цитокинез). Модифицированные центриоли также находятся у основания жгутиков и ресничек у простейших, там их называют базальными тельцами.
Цикл развития[править | править код]
Обычно в течение клеточного цикла центриоль удваивается один раз. Рядом с каждой половинкой «материнской» центриоли достраивается «дочерний» цилиндрик; происходит это, как правило, в течение G2-периода интерфазы. В профазе митоза две центриоли расходятся к полюсам клетки и формируют две центросомы. Центросомы в свою очередь служат ЦОМТами (центрами организации микротрубочек) веретена деления. Однако от этой общей схемы существует масса отклонений. Во многих клетках центриоли многократно удваиваются за один клеточный цикл. При созревании яйцеклеток у подавляющего большинства животных центриоли разрушаются (при этом многие белки, входящие в состав центросом, по-прежнему присутствуют в клетке). При образовании сперматозоидов, напротив, деградирует центросома; одна из центриолей превращается в базальное тельце жгутика, а вторая сохраняется интактной. Однако у мыши и других грызунов (в отличие от остальных изученных млекопитающих), а также у улиток деградируют и обе центриоли сперматозоидов. После оплодотворения новые центриоли возникают в зиготе либо за счет удвоения центриоли, внесенной сперматозоидом, либо за счет образования заново[1].
Примечания[править | править код]
- ↑ Manandhar, G., Schatten, H., Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of reproduction 72: 2–13. doi:10.1095/biolreprod.104.031245 (англ.)
Литература[править | править код]
Ю. С. Ченцов, Общая цитология. М., Изд-во Моск. 1978
Немембранная органелла, состоящая из двух цилиндрических структур, называется клеточным центром или центросомой. Строение и функции клеточного центра связаны с делением клетки.
Строение
Органелла была обнаружена в 1875 году немецким биологом Вальтером Флеммингом. Центросома чаще всего располагается рядом с ядром или комплексом Гольджи. Размер органеллы не превышает 0,5 мкм в длину и 0,2 мкм в диаметре. Клеточный центр присутствует только в животной клетке. В клетках растений, грибов, некоторых простейших центросома не наблюдается.
Рис. 1. Строение центриолей.
Клеточный центр состоит из двух центриолей, расположенных друг к другу под прямым углом. Каждая центриоль – белковая структура, образованная девятью триплетами микротрубочек. Триплет означает три трубочки в ряд, т.е. всего в центриоли 27 микротрубочек. Триплеты соединены белковыми нитями по кругу, образуя цилиндр. В центре цилиндра располагается белковый стержень, к которому прикреплены все триплеты. На поперечном сечении центриоль напоминает цветок, лепестки которого направлены в одну сторону.
Рис. 2. Центросома с микротрубочками.
Подробное описание компонентов центросомы описано в таблице «Строение и функции клеточного центра».
Компоненты | Особенности строения | Функции |
Центриоли | – Микротрубочки; – белковые нити; – белковый стержень (ось) | Производят микротрубочки с помощью белков, т.е. являются ЦОМТ – центром организации микротрубочек. В S-фазе интерфазы удваиваются путём самосборки, расходятся к полюсам клетки и выстраивают веретено деления |
Сателлиты – придатки материнской центриоли | – Ножки, соединённые с центриолью; – головка или фокус схождения микротрубочек (ФСМТ) | Производят микротрубочки, собирают и разбирают веретено деления |
Микротрубочки | Белок тубулин. Имеют минус-концы, связанные с центриолью и плюс-концы, расходящиеся к периферии клетки | Прикрепляются с двух сторон (от каждой пары центриолей) во время митоза к центромерам хромосом, формируя веретено деления. Удерживая части хромосом, микротрубочки начинают разбираться от центриолей, тем самым оттягивая хромосомы к полюсам и способствуя делению клетки |
Матрикс или центросомное гало | Различные белки | Окружает центросому. В микроскопе выглядит как более светлое пятно цитоплазмы, окружающее клеточный центр. Принимает участие в сборке микротрубочек. Вместе с сателлитами и отходящими от них микротрубочками образуется центросферу, окружающую центриоли |
Рис. 3. Формирование веретена деления.
Конструкция, которую образуют две центриоли, называется диплосомой. В ней различают материнскую и дочернюю центриоли. Только материнская центриоль производит микротрубочки. Дочерняя располагается перпендикулярно к материнской.
Функции
Помимо образования веретена деления и участия в митозе органоид выполняет другие функции:
ТОП-4 статьикоторые читают вместе с этой
- формирует цитоскелет, состоящий из микротрубочек, пронизывающих цитоплазму;
- участвует в образовании жгутиков и ресничек, формируя остевую нить – аксонему;
Цитоскелет необходим для движения цитоплазмы, что способствует метаболизму. В некоторых организмах центриоли присутствуют только в клетках, несущих жгутики или реснички.
Несмотря на способность к самоудвоению, центросома не имеет ДНК. Однако в составе присутствует РНК, но её назначение в клеточном центре остаётся неясным.
Что мы узнали?
Узнали кратко о строении и функциях клеточного центра в клетке. Это важная органелла животной клетки, которая производит микротрубочки, выстраивает веретено деления и цитоскелет, участвует в образовании подвижных органелл – жгутиков и ресничек. Центросома состоит из двух белковых структур – центриолей. От материнской центриоли отходят сателлиты, которые выстраивают микротрубочки. Две центриоли образуют диплосому, окружённую матриксом.
Тест по теме
Оценка доклада
Средняя оценка: 4.7. Всего получено оценок: 198.
Анонимный вопрос · 20 декабря 2018
3,0 K
Клеточный центр это немембранный органоид. Он состоит из двух центриолей.
Центриоли же состоят из девяти триплетов микротрубочек.
Важное значение клеточного центра — участие в делении клетки:
Во время деления, центриоли клеточного центра расходятся к полюсам клетки. Образуется веретено деления. Микротрубочки веретена деления прикрепляются к центромерам хромосом и тянут их к полюсам клетки. В результате чего, в делящихся клетках равномерно распределяется генетический материал.
Что такое клеточная механика?
Клеточная механика — раздел биофизики, описывающий механические свойства клеток. Внутри клеток действуют те же силы, что и в неживой природе, а снаружи клетки испытывают те же механические нагрузки, что и все остальные живые организмы. Клеточная механика делится на те же разделы что и обычная механика:
1. Клеточная кинематика — определение положения и характеристик движения клеток во времени и пространстве, системы координат, траектории, масса, объём, длинна и площадь клеток.
2. Клеточная динамика — движение, работа, поведение во времени, развитие и эволюция клеток под влиянием внешних сил и факторов, клеточные кинематические цепи, упругость, статика и гидродинамика клеток, воздействие гравитации и релятивистских эффектов на клетки, описание клеточных процессов с помощью динамических систем, уравнений хаоса и фракталов.
3. Клеточные колебания и волны — колебательное прохождение различных форм энергии сквозь тело клетки, акустика, оптика, электричество и магнетизм в клетках.
4. Клеточная термодинамика — влияние температуры на клетки.
5. Квантовая механика клетки — влияние субатомных частиц — электронов, фотонов, протонов, нейтронов и кварков на функции клеток.
Человеческие NK-клетки могут проявлять адаптивные иммунные ответы? Это врожденный иммунитет либо нет?
Процитирую Вики:
«Хотя NK-клетки принято считать компонентом врождённого иммунитета, они обладают рядом свойств, характерных для клеток адаптивного иммунитета — T- и B-клеток. Так, отдельные популяции NK-клеток могут претерпевать быструю экспансию или сокращение численности, кроме того, NK-клетки образуют особую форму иммунологической памяти, благодаря которой их ответ на повторное вторжение патогена становится более стремительным, чем при первичном контакте.»
О чём свидетельствует сходство клеточного центра и базального тельца?
Разберемся, что между ними общего
-Клеточный центр содержит пару центриолей, цилиндрических структур, расположенных под углом к друг другу. Каждая центриоль образована 9 триплетами микротрубочек, расположенных по кругу.
Каждое базальное тельце также представляет собой цилиндр, образованный девятью триплетами микротрубочек (9+0)
-Оба органоида являются не мембранными, специального назначения.
-Оба способны образовывать микротрубочки, посредством их базальное тельце формирует жгутики и реснички. В некоторых случаях даже сама центриоль может образовывать орагоноиды движения
Сходное строение этих органоидов объясняется тем, что из центриолей формируются базальные тельца, они являются их видоизменением.
P. S. однако по своему происхождению базальные тельца не всегда связаны с центриолями (например, они есть в лишенных центриолей клетках инфузорий) и образуются различными способами.
Как происходит деление клетки?
Деление клетки состоит из 2 этапов:
- Интерфазы
- Митоза (собственно деления)
- Интерфаза. На этой стадии клетка готовится к митозу : она накапливает энергию, различные белки, то есть клетка интенсивно растет и что самое главное — на этой стадии удваивается генетический материал, то есть происходит репликация ДНК.
- Митоз. Состоит из 4 фаз:
—Профаза. Тут происходит спирализация хромосом, то есть они плотно упаковываются, растворяется ядерная оболочка, центриоли расходятся к полюсам клетки. Каждая хромосома состоит из 2ух хроматид (сестренских).
—Метафаза. Хромосомы выстраиваются в экваториальной плоскости, образуя «метафазную пластинку».
—Анафаза. Сестренские хроматиды расходятся к разным полюсам клетки. Каждая хроматида теперь самостоятельная хромосома.
—Телофаза. Вокруг хромосом у разных полюсов клетки начинает формироваться ядерная оболочка и образуются 2 самостоятельные клетки.
Прочитать ещё 2 ответа
Что такое биомембраны?
Профессор в области физической биохимии, Германия
Биомембраны — это самая крупная и наиболее активная структура каждой клетки, например, общая площадь внутренних мембран митохондрий в человеке составляет 14000 м2. На них происходит преобразование энергии, окислительное фосфорилирование в митохондриях и фотосинтез в хлоропластах. Биомембраны также участвуют в передаче сигналов между клетками, являются спусковым крючком и/или целью при многих заболеваниях.
Процесс старения управляется сложной сетью взаимосвязанных молекул. Наибольшее значение имеют те молекулы, которые связаны с функционированием митохондрий. В настоящее время проводятся глобальные исследования методами системной биологии, чтобы понять взаимосвязь между активностью белков, преобразованием энергии, окислительным стрессом (повреждением клетки в результате окисления) и старением. К примеру, ферментативная активность OxPhos суперкомплексов, необходимая для стабильного функционирования дыхательной цепочки, оказывается от 2-х до 40 раз выше, чем у соответствующих индивидуальных комплексов. Это важно для выяснения молекулярных основ старения и возрастных болезней, таких как болезни Альцгеймера и Паркинсона. Изменения в количестве таких суперкомплексов, влияющие на структуру и функцию митохондрий, наблюдались в процессе старения у грибов, червей, крыс и клеток человека.. Эти динамические изменения оказывают сильное влияние на энергетический метаболизм и играют значительную роль в физиологии и патофизиологии, включая болезнь Альцгеймера и болезнь Паркинсона.
Прочитать ещё 1 ответ