У какого элемента наиболее выраженные металлические свойства

У какого элемента наиболее выраженные металлические свойства thumbnail

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

  • натрия;
  • калия;
  • лития;
  • франция и так далее.

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

  1. фтор;
  2. кислород;
  3. азот;
  4. хлор;
  5. бром.

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Почему металлические свойства

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Почему металлические свойства

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Металлические свойства

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

Видео

Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

Читайте также:  Какими свойствами обладает асд 2

Источник

Âñå ïðîñòûå âåùåñòâà ïåðèîäè÷åñêîé ñèñòåìû Ä.È. Ìåíäåëååâà ïîäðàçäåëÿþòñÿ íà òðè êëàññà: ýëåìåíòû ñ ìåòàëëè÷åñêèìè ñâîéñòâàìè (ìåòàëëû), ýëåìåíòû ñ íåìåòàëëè÷åñêèìè ñâîéñòâàìè (íåìåòàëëû) è ïîëóìåòàëëû.

Ôèçè÷åñêèå è õèìè÷åñêèå ñâîéñòâà ïðîñòûõ âåùåñòâ, ïðèíàäëåæàùèõ ê ðàçëè÷íûì êëàññàì, ñèëüíî ðàçëè÷àþòñÿ ìåæäó ñîáîé, ÷òî îáóñëàâëèâàåò ðàçëè÷íûå îáëàñòè èõ ïðèìåíåíèÿ â ïðîìûøëåííîñòè è ñïîñîáû äîáû÷è.

Êîðîòêî îñòàíîâèìñÿ íà ìåòàëëàõ: èõ ìåòàëëè÷åñêèõ ñâîéñòâàõ, îñíîâíûõ ñïîñîáàõ äîáû÷è è îáðàáîòêè.

Ñâîéñòâà ìåòàëëè÷åñêèõ ýëåìåíòîâ

Ñ ôèçèêî-õèìè÷åñêîé òî÷êè çðåíèÿ, îñíîâíîå ñâîéñòâî ìåòàëëîâ çàêëþ÷àåòñÿ â ëåãêîñòè îòðûâà èõ âíåøíåãî ýëåêòðîíà îò àòîìà, äðóãèìè ñëîâàìè – ëåãêîñòü èîíèçàöèè àòîìà ìåòàëëà ïî óðàâíåíèþ:

Me=Me++ e-

Îáëàäàÿ äàííûì ñâîéñòâîì, ìåòàëëû â òâåðäîì ñîñòîÿíèè ïðåäñòàâëÿþò ñîáîé êðèñòàëëè÷åñêóþ ðåøåòêó, â óçëàõ êîòîðîé íàõîäÿòñÿ èîíû ìåòàëëîâ, à ìåæäó íèìè ñâîáîäíî äâèãàþòñÿ äåëîêàëèçîâàííûå ýëåêòðîíû, îáðàçóþùèå òàê íàçûâàåìûé ýëåêòðîííûé ãàç. Òàêîé òèï õèìè÷åñêîé ñâÿçè íàçûâàåòñÿ ìåòàëëè÷åñêîé ñâÿçüþ.

Èìåííî ìåòàëëè÷åñêàÿ ñâÿçü ïðèäàåò ýëåìåíòàì îñíîâíûå ìåòàëëè÷åñêèå ñâîéñòâà: âûñîêóþ ýëåêòðè÷åñêóþ ïðîâîäèìîñòü, òåïëîïðîâîäíîñòü, ïëàñòè÷íîñòü, êîâêîñòü, ìåòàëëè÷åñêèé áëåñê.

Ýëåìåíòû ñ íàèáîëåå ÿðêî âûðàæåííûìè ìåòàëëè÷åñêèìè ñâîéñòâàìè

Íàèáîëåå ÿðêî ìåòàëëè÷åñêèå ñâîéñòâà âûðàæåíû ó ùåëî÷íûõ ìåòàëëîâ (Li, Na, K, Rb, Cs, Fr), ÷òî îáóñëîâëåíî íèçêèì çíà÷åíèåì ýíåðãèé èîíèçàöèè èõ àòîìîâ. Ýòî î÷åíü ìÿãêèå ìåòàëëû (ìîæíî ðåçàòü íîæîì), îáëàäàþùèå ÷ðåçâû÷àéíî âûñîêîé õèìè÷åñêîé àêòèâíîñòüþ.

Óæå ïðè êîìíàòíîé òåìïåðàòóðå ìÿãêèå ìåòàëëû áûñòðî îêèñëÿþòñÿ êèñëîðîäîì âîçäóõà, ïîýòîìó èõ õðàíÿò ïîä ñëîåì êåðîñèíà. Ïîä âîäîé ùåëî÷íûå ìåòàëëû õðàíèòü íåëüçÿ.

Ñîåäèíåíèå ýëåìåíòîâ ñ âîäîé ïðèâîäèò ê âçðûâó. Ðåàêöèÿ ïðîòåêàåò ñ âûäåëåíèåì âîäîðîäà ïî óðàâíåíèþ:

2Na+2H2O=2NaOH+H2

Ïîñêîëüêó âîäîðîä îáðàçóåò ñ âîçäóõîì âçðûâîîïàñíûå ñìåñè, à ðåàêöèÿ ñîïðîâîæäàåòñÿ âûäåëåíèåì áîëüøîãî êîëè÷åñòâà òåïëà, êàê ïðàâèëî, ïðîèñõîäèò âçðûâ.

Äîáû÷à ìåòàëëè÷åñêèõ ýëåìåíòîâ

Ìíîãèå ìåòàëëû ñóùåñòâóþò â ïðèðîäíûõ óñëîâèÿõ â âèäå ñîåäèíåíèÿ ñ äðóãèìè õèìè÷åñêèìè ýëåìåíòàìè.  ñàìîðîäíîì âèäå, òî åñòü, êàê ïðîñòîå âåùåñòâî, â ïðèðîäå â îñíîâíîì âñòðå÷àþòñÿ òîëüêî çîëîòî (Au) è ïëàòèíà (Pt). Èíîãäà, íî ðåäêî è òîëüêî ÷àñòè÷íî, âñòðå÷àþòñÿ ñàìîðîäíîå ñåðåáðî (Ag), ìåäü (Cu), ðòóòü (Hg), îëîâî (Sn) è íåñêîëüêî äðóãèõ ìåòàëëîâ.

Ïîäàâëÿþùåå áîëüøèíñòâî ìåòàëëîâ äîáûâàþò èç ðóäû. Ñïîñîá äîáû÷è çàâèñèò îò õèìè÷åñêèõ ñâîéñòâ ìåòàëëà.

Îñíîâíûìè ìåòîäàìè ïðîìûøëåííîãî ïîëó÷åíèÿ ìåòàëëîâ èç ðóäû ÿâëÿþòñÿ âîññòàíîâëåíèå èõ ñîåäèíåíèé (íàïðèìåð, óãëåì, ìîíîîêñèäîì óãëåðîäà èëè àëþìèíèåì) è ýëåêòðîëèç.

Òàê, æåëåçî ìîæåò áûòü ïîëó÷åíî ïóòåì âîññòàíîâëåíèÿ ðóäû ïî îäíîìó èç äâóõ óðàâíåíèé:

Fe2O3+3CO=2Fe+3CO2

Fe2O3+2Al=2Fe+Al2O3

Ìåòàëëè÷åñêàÿ ìåäü ìîæåò áûòü ïîëó÷åíà ïðè ýëåêòðîëèçå âîäíîãî ðàñòâîðà äèõëîðèäà (CuCl2) ïî óðàâíåíèþ:

Cu2++2e-=Cu

Ðàçðóøåíèå ìåòàëëè÷åñêèõ è æåëåçîáåòîííûõ ýëåìåíòîâ è êîíñòðóêöèé

Ìåòàëëû è ñïëàâû, èñïîëüçóåìûå â ñòðîèòåëüñòâå, ðàçðóøàþòñÿ ïîä âîçäåéñòâèåì ðàçëè÷íûõ ïðîöåññîâ êîððîçèè:

  • àòìîñôåðíîé;
  • ýëåêòðîõèìè÷åñêîé;
  • ãàçîâîé;
  • êîððîçèÿ â äðóãèõ àãðåññèâíûõ ñðåäàõ.

Íàëè÷èå çàùèòíîãî ñëîÿ óâåëè÷èâàåò ñðîê ñëóæáû ìåòàëëîêîíñòðóêöèé, íî ïðîöåññ êîððîçèè ïîëíîñòüþ íå îñòàíàâëèâàåòñÿ.

Îäíîé èç ïðè÷èí ðàçðóøåíèÿ æåëåçîáåòîííûõ êîíñòðóêöèé ÿâëÿåòñÿ êîððîçèÿ àðìàòóðû.

Ðàçðóøåíèå ñòàëüíûõ è æåëåçîáåòîííûõ êîíñòðóêöèé óñêîðÿåòñÿ ïîä íàãðóçêîé, ïðè ðåçêèõ êîëåáàíèÿõ òåìïåðàòóðû îêðóæàþùåé ñðåäû, è îñîáåííî ïðè ñîâìåñòíîì äåéñòâèè ýòèõ ôàêòîðîâ. Óâåëè÷åíèå óñòîé÷èâîñòè ìåòàëëîêîíñòðóêöèé ê ïðîöåññàì êîððîçèè ÿâëÿåòñÿ âàæíåéøåé çàäà÷åé ñîâðåìåííîãî ìàòåðèàëîâåäåíèÿ.

Áîëüøå îá îáðàáîòêå ìåòàëëè÷åñêèõ ýëåìåíòîâ íà âûñòàâêå

Ìåòàëëû è ñïëàâû ïîäâåðãàþòñÿ ðàçíûì âèäàì îáðàáîòêè òàêèõ, êàê:

  • äàâëåíèå (êîâêà);
  • ðåçàíèå;
  • ëèòüå;
  • òåðìè÷åñêîå âîçäåéñòâèå;
  • ñâàðêà;
  • ýëåêòðîèñêðîâûå è ýëåêòðîõèìè÷åñêèå ìåòîäû;
  • âîçäåéñòâèå óëüòðàçâóêà.

Òåõíîëîãèÿ îáðàáîòêè ìåòàëëîâ è ñïëàâîâ ïîñòîÿííî ðàçâèâàåòñÿ. Ýòà îòðàñëü ïðîìûøëåííîñòè îòíîñèòñÿ ê íàóêîåìêîé ñôåðå, ãäå ïîñòîÿííî ïðîèñõîäÿò èçìåíåíèÿ.

Ïîñåùåíèå ñïåöèàëèçèðîâàííîé âûñòàâêè «Ìåòàëëîîáðàáîòêà»
– îäèí èç ëó÷øèõ ñïîñîáîâ íàõîäèòüñÿ â êóðñå ïîñëåäíèõ äîñòèæåíèé. Ýêñïîçèöèè ïðåäïðèÿòèé ñî âñåãî ìèðà äàþò âîçìîæíîñòü îçíàêîìèòüñÿ ñ ãëàâíûìè òåíäåíöèÿìè ðàçâèòèÿ îòðàñëè è óâèäåòü òåõíîëîãèè ñîâðåìåííîé îáðàáîòêè ìåòàëëè÷åñêèõ èçäåëèé.

×èòàéòå äðóãèå íàøè ñòàòüè:

Îãíåçàùèòà ìåòàëëè÷åñêèõ êîíñòðóêöèé
Äîðîæíîå ìåòàëëè÷åñêîå îãðàæäåíèå
Îêðàñêà è ïîêðàñêà ìåòàëëè÷åñêèõ èçäåëèé

Источник

Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

1. При перемещении СПРАВА НАЛЕВО вдоль ПЕРИОДА МЕТАЛЛИЧЕСКИЕ свойства р-элементов УСИЛИВАЮТСЯ. В обратном направлении — возрастают неметаллические.

Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.

Например, углерод — более выраженный неметалл, чем его сосед по периоду бор, а азот обладает еще более яркими неметаллическими свойствами, чем углерод.

Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

Наоборот, s-элементы в левой части таблицы имеют мало электронов на внешней оболочке и меньший заряд ядра, что способствует образованию именно металлической связи. За понятным исключением водорода и гелия (их оболочки близки к завершению или завершены!) , все s-элементы являются металлами; p-элементы могут быть как металлами, так и неметаллами, в зависимости от того — в левой или правой части таблицы они находятся.

У d- и f-элементов, как мы знаем, есть «резервные» электроны из «предпоследних» оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.

Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы.

Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам.

Что такое полуметаллы? Если выбрать из Периодической таблицы p-элементы и записать их в отдельный «блок» (это сделано в “длинной” форме таблицы) , то обнаружится закономерность. Левая нижняя часть блока содержит типичные металлы, правая верхняя — типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, называются полуметаллами.

Читайте также:  Какие лечебные свойства у финика

Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности) . Валентных электронов у них либо недостаточно для образования полноценной «октетной» ковалентной связи (как в боре) , либо они не удерживаются достаточно прочно (как в тeллуре или полонии) из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.

Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них — существенно меньшая (хотя и не нулевая) электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

Источник: https://www.hemi.nsu.ru/text146.htm

Источник

В настоящий момент науке известно сто пять химических элементов, систематизированных в виде периодической таблицы. Подавляющее большинство из них причисляют к металлам, что подразумевает наличие у этих элементов особых качеств. Это так называемые металлические свойства. К таким характеристикам, в первую очередь, относятся пластичность, повышенная тепло- и электропроводимость, способность к образованию сплавов, низкое значение потенциала ионизации. 

Металлические свойства

Металлические свойства того или иного элемента обусловлены способностью его атомов при возникновении взаимодействия с атомными структурами других элементов смещать в их направлении электронные облака или же «отдавать» им свои свободные электроны. Самыми активными металлами являются те, что имеют низкую энергию ионизации и электроотрицательность. Также ярко выраженные металлические свойства характерны для элементов, имеющих максимально большой радиус атома и предельно малое число внешних (валентных) электронов.

Металлические свойства элементов

По мере наполнения валентной орбиты количество электронов во внешнем слое атомной структуры возрастает, и радиус, соответственно, уменьшается. В связи с этим атомы начинают стремиться к присоединению свободных электронов, а не к их отдаче. Металлические свойства таких элементов приобретают тенденцию к уменьшению, а их неметаллические свойства – к увеличению. И, наоборот, при увеличении атомного радиуса отмечается усиление металлических свойств. Поэтому характерной общей чертой всех металлов являются, так называемые, восстановительные качества – та самая способность атома отдавать свободные электроны.

Наиболее ярко металлические свойства элементов проявляются у веществ первой, второй групп главных подгрупп периодической таблицы, а также у щелочных и щелочноземельных металлов. Но самые сильные восстановительные качества наблюдаются у франция, а в водной среде – у лития благодаря более высокому показателю энергии гидратации.

Усиление металлических свойств

Количество элементов, у которых проявляются металлические свойства, в пределах периода возрастает с увеличением номера периода. В периодической таблице металлы от неметаллов отделены диагональной линией, которая тянется от бора к астату. По этой разделительной черте расположены элементы, у которых в равной степени проявляются и те, и другие качества. К таким веществам относятся кремний, мышьяк, бор, германий, астат, сурьма и теллур. Данная группа элементов называется металлоидами.

Каждый период характеризуется наличием своеобразной «пограничной зоны», в которой располагаются элементы с двойственными качествами. Следовательно, переход от ярко выраженного металла к типичному неметаллу осуществляется постепенно, что и нашло отражение в периодической таблице.

Общие свойства металлических элементов (высокая электропроводимость, теплопроводность, ковкость, характерный блеск, пластичность и др.) обусловлены схожестью их внутреннего строения, а точнее – наличием кристаллической решетки. Однако существует немало качеств (плотность, твердость, температура плавления), которые придают всем металлам сугубо индивидуальные физико-химические свойства. Эти характеристики зависят от строения кристаллической решетки каждого конкретного элемента.

Источник

Leonard B.  ·  11 октября 2018

6,8 K

Прикладной ответ:

1) Углерод (С; 6) vs Натрий (Na; 11). Тут конечно Натрий имеет более выраженные металлические свойства, так как находиться в левой части таблице.

2)Фосфор (P;15) и Хлор (Cl; 17). Атомы находятся в одном периоде, соответственно Фосфор более левей расположился и потому имеет незначительно больше металлических свойств.

3) Фтор (F; 9) и Хлор (Cl; 17). Тут победитель — хлор, поскольку он находиться ниже относительно фтора.

Теоретический ответ и обоснование:

1) При перемещении вдоль периода, слева на право, металлический свойства уменьшаются. Соответственно неметаллические возрастают.
Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

2) При перемещении сверху вниз по группам

металлические свойства элементов усиливаются. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

3) Визуально, для быстрой оценки очень удобно представлять таблицу Менделеева в виде прямоугольника, где оранжевая часть отвечает за металлические элементы, а фиолетовая за неметаллические. А направление стрелок указывают на увеличение металлических свойств. Мне в свое время очень помогло разобраться и запомнить данные тенденции. И да, линия смены металлов и неметаллов условная и именно по этому данная табличка не содержит каких-то границ переходных атомов. Используйте с умом.

Если есть, то какая вероятность того, что во вселенной есть еще не открытые химические элементы?

Есть, стопроцентная. 

Менделеев, когда открыл периодическую таблицу химических элементов, расположил в ней все известные на тот момент элементы. Гениальность его открытия в том и состояла, что с помощью этой таблицы можно было предсказать свойства еще неоткрытых химических элементов. 

И эта блестящая теория на сто процентов оправдала себя. С момента составления таблицы было открыто множество химических элементов и все они укладывадись в прогнозы.

Читайте также:  Какое свойство жидкостей и газов используют

На данный момент остались неоткрытыми 8 элементов: 

  • Унбибий
  • Унбигексий
  • Унбиквадий
  • Унбинилий
  • Унбипентий
  • Унбитрий
  • Унбиуний
  • Унуненний
    Сложность в том, что их место и предполагаемые свойства известны, а вот условия, в которых они появляются — нет. Но они явно далеки от земных и моделирование таких условий в научных лабораториях — дело не столь отдаленного будущего

Чем отличаются друг от друга поколения X, Y и Z?

По специальности инженер, по любви — писатель и путешественник. Мечтаю написать…

Поколение Z: рождённые в 1996 году и позже;

Поколение Y (миллениума): рождённые в период с 1981 года по 1995 год;

Поколение X: рождённые в период с 1965 года по 1979 год.

Стоит обратить внимание, что в зависимости от географического положения и социального положения страны поколения могут начинаться и заканчиваться в разные периоды.

Поколения различаются своим отношением к жизни, к карьере, выбором систем ценностей, жизненными приоритетами, уровнем образования.

Поколение X:

Например, для поколения Х важен баланс между работой и личной жизнью. К тому же, их молодые годы пришлись на создание и развитие интернета, создания сотовых телефонов и компьютеров. Между быстрым перекусом и полноценным приемом пищи они выберут второй вариант. Между работой дома и работой в офисе выберут также второй вариант.

Поколение У:

Поколение У выросло в самый пик развития многоконкурентного мира высоких технологий и возможностей. Они много времени уделяют общению в сети, всегда онлайн. Работа удалённо и кругосветка? Второе, третье высшее образование? Уход из офиса? Это про них. Они нестандартно мыслят и заботятся о своём здоровье и экологии.

Поколение Z:

Поколение Z считается будущим мировой экономики. Они амбициозны. Они также всегда онлайн (больше поколения У). У них с рождения был большой спектр выбора жизненного пути, и они это знают и умеют воспользоваться любой возможностью. Поколение Z это поколение веганов, хипстеров, защитников экологии и равенства полов.

Прочитать ещё 4 ответа

⦁ Как строение металлов и неметаллов обуславливает их свойства?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Ваш вопрос имеет отношение скорее к химии. Металлы имеют немолекулярное строение и сходные физические свойства: это твердые вещества (кроме ртути), они обладают характерным металлическим блеском, не имеют запаха, хорошо проводят тепло и электрический ток, а также имеют немолекулярное строение. Неметаллы также имеют свой набор свойств, отличающихся от металлов: отсутствует металлический блеск, имеют низкую электропроводность и теплопроводность; большинство неметаллов имеет молекулярное строение (кислород, азот, хлор, фтор и т.д.); неметаллы могут существовать в трех формах: жидком (бром), твердом (сера, иод, белый фосфор) и газообразном состоянии (водород, кислород, азот, инертные газы и т.д.).

Все эти свойства обусловлены строением металлов и неметаллов:

  • Высокую электропроводность металлов обуславливают свободные электроны, перемещающиеся по кристаллической решётке под действием электрических полей. При нагревании электропроводность уменьшается;

  • Металлический блеск металлов, пластичность и другие свойства обусловлены их кристаллическим строением, в узлах кристаллической решетки расположены отдельные атомы. Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами.

  • Высокая теплопроводность металлов происходит из-за наличия свободных электронов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них — следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

  • Металлы – восстановители (отдают электроны) они вступают в химические реакции с неметаллами, образуя оксиды, гидроксиды, соли. Самыми активными являются щелочные и щелочноземельные металлы, расположенные в I и II группах таблицы Менделеева. Благородные металлы (Au, Ag, Pt) малоактивны и не взаимодействуют с кислородом и водой;

  • Неметаллические свойства связаны со способностью атомов элементов присоединять к себе электроны. Притяжение внешних электронов к ядру тем сильнее, чем меньше размеры атома и больше заряд ядра. В периоде с ростом заряда ядра от элемента к элементу радиус атома уменьшается, сильнее становится притяжение внешних электронов к ядру и неметаллические свойства усиливаются.

Почему нержавейка при наличии хрома и никеля, она магнитится? Хим.состав: % C 0,0021 si 0,42 mn 1,54,P 0,34 S 0,001, CR 18,2 Ni 8,1 N 0,037 (лаб. проводили)

Researcher, Institute of Physics, University of Tartu

Магнитность нержавеющей, да и любой другой стали определяется в основном не тем, какие именно элементы в нее входят, а фазовым составом и доменной структурой стали. В нержавейке магнитными фазами являются обычно мартенситовые фазы и ферритовые фазы. И те и другие в общем-то представляют собой растворы углерода (и других легирующих добавок) в альфа-модификации железа. При этом образование мартенситовых и ферритовых фаз связано в основном со способом получения стали, а легирующие добавки (в Вашем случае это видимо хромникелевая сталь) могут только усиливать или ослаблять ферромагнетизм этих фаз.

Неманитные нержавейки, например, аустенитные (аустенит — твердый раствор углерода в гамма-железе), также могут быть легированы большим количеством хрома и никеля и оставаться при этом немагнитными.

UPDATE — Сейчас увидел Ваш комментарий к вопросу. Сталь этой марки аустенитная, то есть магнититься по идее не должна. Но если она проходила дополнительную термообработку с закалкой (даже на воздухе), например, сварка или еще что-то в этом роде, то может произойти частичное превращение аустенита в мартенсит. И, соответственно, появится некоторая магнитность.

Источник