Теплопроводность продукта относится к каким свойствам

Теплопроводность продукта относится к каким свойствам thumbnail

К общим теплофизическим свойствам относятся температура, теплоем­кость и теплопроводность. Единичные экземпляры товаров и их товарная масса характеризуются неоднородной струк­турой, что обусловлено химическими свойствами и соста­вом, строением, а также наличием аэропространства меж­ду отдельными товарами и/или упаковками в товарной партии. Это обусловливает общность и различия показате­лей, характеризующих теплофизические свойства.

Температура– основная физическая величина, кото­рая характеризует теплодинамическое состояние как еди­ничных экземпляров товаров, так и их совокупностей – товарных партий.

Температура товара и товарной партии зависит от тем­пературы окружающей среды. При перемещении товаров из одной среды в другую возникают перепады температу­ры, что может вызвать выпадение конденсата на таре и товарах, а также их увлажнение. Вследствие этого могут увеличиться масса товаров, произойти нежелательные ка­чественные изменения (микробиологическая порча, корро­зия металлов и т.п.).

Температура товаров и товарных партий существенно влияет на их сохраняемость. При высокой температуре увеличивается интенсивность биохимических, микробиоло­гических и некоторых физических процессов (например, усушка), вследствие чего возрастают потери, ухудшается сохраняемость товаров, сокращаются сроки хранения. Низ­кие температуры, снижая интенсивность многих процес­сов, также могут вызывать негативные явления (замерза­ние, застуживание). Поэтому оптимальная температура товаров индивидуальна для каждой товарной группы или даже вида. Например, температура молока должна быть не выше 8°С, но не ниже 0°С.

Особенно важен этот показатель для скоропортящихся пищевых продуктов. Для некоторых из них даже регламен­тируется в стандарте температура самого товара (напри­мер, для молока). В большинстве случаев устанавливается температура не товара, а температурный режим хране­ния, что не всегда одно и то же.

Теоретически температура товара, товарной партии и окружающей среды (температурный режим хранения) должна совпадать, однако практически этого не всегда удается достигнуть, что обусловлено разной теплоем­костью и теплопроводностью единичных товаров, товар­ных партий и воздушной окружающей среды, влияющих на скорость выравнивания температуры всех указанных объектов.

Теплоемкость– количество тепла, необходимое для повышения температуры объекта определенной массы в определенном интервале температур.

Показателем теплоемкости служит удельная теплоем­кость, которая определяется количеством тепла, необхо­димым для повышения температуры 1 кг продукта на 1°С. Выражается показатель в Дж/0С или Дж/(кг • К), где К – градус Кельвина. Удельная теплоемкость воды равна 1, углеводов – 0,34, жиров – 0,42, белков – 0,37 Дж/°С.

Теплоемкость (С) рассчитывается по формуле:

,

где Q – количество тепла, Дж;

t1и t2 – начальная и конечная температура тела, град.

Удельная теплоемкость разных товаров неодинакова, о чем свидетельствуют данные о теплоемкости пищевых про­дуктов, приведенные в табл. 1.

Таблица 1. – Удельная теплоемкость и коэффициент теплопроводности

отдельных пищевых продуктов

Наименование
продуктов
Удельная тепло­емкость
сухих ве­ществ, Дж/(кг-К)
Коэффициент
теплопровод­ности, Вт/(м • К)
Овощи
Мясо (разные ткани)
Рыба (разных видов)
Молочные продукты
1298-1465
1465-1675
1147-1633
1717-5620
0,60-0,62
0,41-0,56
0,43 -0,55
0,13-0,20

Теплоемкость товаров зависит от их химического со­става и температуры, а товарных партий – еще и от аэро­пространства внутри товарной партии. С увеличением влаж­ности и температуры теплоемкость, как правило, увели­чивается.

Удельная теплоемкость рассчитывается для определе­ния количества тепла, которое нужно передать товару для его нагревания или отнять для его охлаждения. Этот пока­затель применяется для расчета потребностей в холодиль­ном оборудовании или кондиционерах для обогрева.

Теплопроводность– количество тепла, которое про­ходит через массу объекта определенной толщины и пло­щади в фиксированное время при разности температур на противоположных поверхностях в один градус. Показателем этого свойства является удельная тепло­проводность, или коэффициент теплопроводности, кото­рая характеризуется количеством тепла, проходящего через массу продукта толщиной 1 м на площади 1 м2 за 1 ч. при разности температур на противоположных поверхнос­тях в один градус.

Единица измерения удельной теплопроводности (λ):

Расчет показателя проводят по формуле:

где Q – количество тепла, прошедшее через слой продукта, кДж;

а – толщина слоя, м;

S – площадь поверхности, м2;

t1–t2 – разность температур на противоположных поверхностях, град;

Z – время, ч.

Коэффициент теплопроводности воздуха равен 0,092

сухих веществ – 0,42 – 0,84 .

Очень высокую теплопроводность имеет вода – 2,13 .

Поэтому чем больше в товарной партии аэропространство и ниже влажность товаров, тем меньше теплопроводность. Следовательно, сухие товары с высокой скважистостью медленнее охлаждаются. Поэтому заданные режимы с по­ниженной температурой для сухих товаров устанавлива­ется дольше, чем для влажных или для товаров, не имею­щих аэропространства, но обладающих непрерывной вод­ной фазой. Так, маргарин, расфасованный в коробки моно­литом, охлаждается быстрее, чем маргарин в пачках, или сливочное масло в коробках. Коэффициенты теплопроводности некоторых пищевых продуктов представлены в табл. 1.

Чрезвычайно важно учитывать теплопроводность пи­щевых продуктов, которые хранятся при пониженной тем­пературе (мясо, рыба, плоды и овощи, молочные товары), а также товаров, выделяющих физиологическое тепло (мука, крупа, свежие плоды и овощи). В случае отсутствия еди­ной холодильной цепи в процессе товародвижения тепло­проводность необходимо принимать во внимание при опре­делении предельного времени нахождения товара на опре­деленном этапе движения, а также времени достижения ус­тановленных режимов хранения. В противном случае могут произойти нежелательные изменения товара и в конечном счете – его порча.

Читайте также:  Какие продукты увеличивают количество грудного молока

Коэффициент теплопроводности используется при оценке качества материалов для изготовления одежды и обуви, характеристике теплоизоляционных материалов. Материалы с низким коэффициентом теплопроводности (вата, мех, пенополиуретан, синтепон, перо, пух и т. п.) применяют в качестве утеплителей для зимней одежды, обуви.

Теплопроводность товарных партий зависит от тепло­проводности единичных экземпляров, параметров штабе­ля, а также способа размещения товаров в штабеле или насыпи. Для повышения теплопроводности штабеля с ящи­ками применяют такие способы укладки, как шахматная, «пятериком» или «колодцем».

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 мая 2020;
проверки требуют 5 правок.

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье[править | править код]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (удельная теплопроводность),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

[Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править | править код]

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,
 — заряд электрона,
 — абсолютная температура.

Коэффициент теплопроводности газов[править | править код]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

где  — плотность газа,  — удельная теплоёмкость при постоянном объёме,  — средняя длина свободного пробега молекул газа,  — средняя тепловая скорость. Эта же формула может быть записана как[3]

где  — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа , для одноатомного ),  — постоянная Больцмана,  — молярная масса,  — абсолютная температура,  — эффективный (газокинетический) диаметр молекул,  — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править | править код]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): , где  — размер сосуда,  — давление.

Читайте также:  В каких продуктах витамин в или фруктах больше

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье[править | править код]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править | править код]

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Пенополиизоцианурат (PIR)0,023
Пенополиуретан (поролон)0,019-0,035
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Диоксид углерода (273—320 K, 100 кПа)0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания[править | править код]

  1. ↑ Фурье закон // Естествознание. Энциклопедический словарь (рус.).
  2. Д.В. Сивухин. Общий курс физики: термодинамика и молекулярная физика. — М.: Физматлит, 2006. — С. 345.
  3. ↑ Исследование теплопроводности газов. (недоступная ссылка) // Методические указания.
  4. ↑ J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  5. ↑ C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.
  6. ↑ Merkblatt 821 Архивная копия от 8 августа 2014 на Wayback Machine (PDF; 614 kB); Сталь нержавеющая, свойства стали (нем.), таблица 9

См. также[править | править код]

  • Теплопередача
  • Конвекция
  • Равновесный градиент температуры
  • Тепловое излучение
  • Закон Ньютона — Рихмана
  • Уравнение диффузии
  • Теплоизоляция

Ссылки[править | править код]

  • Теплопроводность воды и водяного пара
  • Коэффициенты теплопроводности элементов
  • Таблица теплопроводности веществ и материалов

Источник

К общим теплофизическим свойствам относятся температура, теплоемкость и теплопроводность. Единичные экземпляры товаров и их товарная масса характеризуются неоднородной структурой, что обусловлено химическими свойствами и составом, строением, а также наличием аэропространства между отдельными товарами и/или упаковками в товарной партии. Это обусловливает общность и различия показателей, характеризующих теплофизические свойства.

Температура — основная физическая величина, которая характеризует теплодинамическое состояние как единичных экземпляров товаров, так и их совокупностей — товарных партий.

Температура товара и товарной партии зависит от температуры окружающей среды. При перемещении товаров из одной среды в другую возникают перепады температуры, что может вызвать выпадение конденсата на таре и товарах, а также их увлажнение. Вследствие этого могут увеличиться масса товаров, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).

Температура товаров и товарных партий существенно влияет на их сохраняемость. При высокой температуре увеличивается интенсивность биохимических, микробиологических и некоторых физических процессов (например, усушка), вследствие чего возрастают потери, ухудшается сохраняемость товаров, сокращаются сроки хранения. Низкие температуры, снижая интенсивность многих процессов, также могут вызывать негативные явления (замерзание, застуживание). Поэтому оптимальная температура товаров индивидуальна для каждой товарной группы или даже вида товара. Например, температура молока должна быть не выше 8 °С, но и не ниже О °С.

Читайте также:  Какие продукты употреблять для роста ребенка

Особенно важен этот показатель для скоропортящихся пищевых продуктов. Для некоторых из них даже регламентируется в стандарте температура самого товара (например, для молока). В большинстве случаев устанавливается температура не товара, а температурный режим хранения, что не всегда одно и то же.

Теоретически температура товара, товарной партии и окружающей среды (температурный режим хранения) должна совпадать, однако практически этого не всегда удается достигнуть, что обусловлено разной теплоемкостью и теплопроводностью единичных товаров, товарных партий и воздушной окружающей среды, влияющих на скорость выравнивания температуры всех указанных объектов.

Теплоемкость — количество тепла, необходимое для повышения температуры объекта определенной массы в определенном интервале температур.

Показателем теплоемкости служит удельная теплоемкость, которая определяется количеством тепла, необходимым для повышения температуры 1 кг продукта на 1 °С. Выражается показатель в Дж/°С или Дж/(кг • К), где К — градус Кельвина.

Удельная теплоемкость воды равна 1 Дж/°С, углеводов — 0,34, жиров — 0,42, белков — 0,37 Дж/°С.

Теплоемкость (С) рассчитывается по формуле:

Теплопроводность продукта относится к каким свойствам

где Q — количество тепла, Дж;

ti и t2 — начальная и конечная температура тела, °С.

Удельная теплоемкость и коэффициент теплопроводности отдельных пищевых продуктов

Таблица 8

Наименование

продуктов

Удельная теплоемкость сухих веществ, ДжДкг • К)

Коэффициент теплопроводности, Вт/(м • К)

Овощи

1298-1465

0,60-0,62

Мясо (разные ткани)

1465-1675

0,41-0,56

Рыба (разных видов)

1147-1633

0,43-0,55

Молочные продукты

1717-5620

0,13-0,20

Удельная теплоемкость разных товаров неодинакова, о чем свидетельствуют данные о теплоемкости пищевых продуктов, приведенные в табл. 8.

Теплоемкость товаров зависит от их химического состава и температуры, а товарных партий — еще и от аэропространства внутри товарной партии. С увеличением влажности и температуры теплоемкость, как правило, увеличивается.

Удельная теплоемкость рассчитывается для определения количества тепла, которое нужно передать товару для его нагревания или отнять для его охлаждения. Этот показатель применяется для расчета потребностей в холодильном оборудовании или кондиционерах для обогрева.

Теплопроводность — количество тепла, которое проходит через массу объекта определенной толщины и площади в фиксированное время при разности температур на противоположных поверхностях в один градус.

Показателем этого свойства является удельная теплопроводность., или коэффициент теплопроводности, который характеризуется количеством тепла, проходящего через массу продукта толщиной 1 м на площади 1 м2 за 1 ч при разности температур на противоположных поверхностях в один градус.

Единица измерения удельной теплопроводности (А,):
Теплопроводность продукта относится к каким свойствам

Расчет показателя проводят по формуле:

Теплопроводность продукта относится к каким свойствам

где Q — количество тепла, прошедшее через слой продукта, кДж;

а — толщина слоя, м;

  • S площадь поверхности, м2;
  • — /2 — разность температур на противоположных поверхностях, град;

Z — время, ч.

Коэффициент теплопроводности воздуха равен:

Теплопроводность продукта относится к каким свойствам

т/Пч/

сухих веществ — 0,42—0,84 ——-. Очень высокую тепло-

м • ч •град

кДж

проводность имеет вода — 2,13 ——-.

м • ч•град

Поэтому чем больше в товарной партии аэропространство и ниже влажность товаров, тем меньше теплопроводность. Следовательно, сухие товары с высокой скважистостью медленнее охлаждаются. Поэтому заданные режимы с пониженной температурой для сухих товаров устанавливаются дольше, чем для влажных или для товаров, не имеющих аэропространства, но обладающих непрерывной водной фазой. Так, маргарин или сливочное масло, расфасованные в коробки монолитом, охлаждаются быстрее, чем в пачках.

Коэффициенты теплопроводности некоторых пищевых продуктов представлены в табл. 8.

Чрезвычайно важно учитывать теплопроводность пищевых продуктов, которые хранятся при пониженной температуре (мясо, рыба, плоды и овощи, молочные товары), а также товаров, выделяющих физиологическое тепло (мука, крупа, свежие плоды и овощи). В случае отсутствия единой холодильной цепи в процессе товародвижения теплопроводность необходимо принимать во внимание при определении предельного времени нахождения товара на определенном этапе движения, а также времени достижения установленных режимов хранения. В противном случае могут произойти нежелательные изменения товара и в конечном счете — его порча.

Коэффициент теплопроводности используется при оценке качества материалов для изготовления одежды и обуви, характеристике теплоизоляционных материалов. Материалы с низким коэффициентом теплопроводности (вата, мех, пенополиуретан, синтепон, перо, пух и т. п.) применяют в качестве утеплителей для зимней одежды, обуви.

Теплопроводность товарных партий зависит от теплопроводности единичных экземпляров, параметров штабеля, а также способа размещения товаров в штабеле или насыпи. Для повышения теплопроводности штабеля с ящиками применяют такие способы укладки, как шахматная, «пятериком» или «колодцем».

Источник