Свойства какого тела изучаются в физике
Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика — раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.
Тепловое движение — беспорядочное (хаотическое) движение атомов или молекул вещества.
ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ
Молекулярно-кинетическая теория — теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.
Основные положения молекулярно-кинетической теории:
- вещество состоит из частиц — молекул и атомов, разделенных промежутками,
- эти частицы хаотически движутся,
- частицы взаимодействуют друг с другом.
МАССА И РАЗМЕРЫ МОЛЕКУЛ
Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода — 5,32*10 -26 кг. Масса одного атома углерода m0C=1,995*10 -26 кг
Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).
Количество вещества — это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода NA:
Моль — количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.
Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:
Молярная масса — масса 1 моля вещества:
Молярная и относительная молекулярная массы вещества связаны соотношением: М = Мr*10 -3 кг/моль.
СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ
Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит
характер определенной закономерности, которая называется распределением Максвелла.
График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.
ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ
Идеальный газ — это упрощенная модель газа, в которой:
- молекулы газа считаются материальными точками,
- молекулы не взаимодействуют между собой,
- молекулы, соударяясь с преградами, испытывают упругие взаимодействия.
Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.
Основное уравнение молекулярно-кинетической теории можно записать в виде
Скорость называют средней квадратичной скоростью.
ТЕМПЕРАТУРА
Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.
Тепловое или термодинамическое равновесие — такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.
Температура — физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют
одну и ту же температуру.
Абсолютный нуль температуры — предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.
Термометр — прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения — 100°С.
Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).
Связь температуры в энергетических единицах и температуры в градусах Кельвина:
где k = 1,38*10 -23 Дж/К — постоянная Больцмана.
Связь абсолютной шкалы и шкалы Цельсия:
T = t + 273
где t — температура в градусах Цельсия.
Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:
Средняя квадратичная скорость молекул
Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:
p=nkT
УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА
Пусть газ массой m занимает объем V при температуре Т и давлении р, а М— молярная масса газа. По определению, концентрация молекул газа: n = N/V, где N-число молекул.
Подставим это выражение в основное уравнение молекулярно-кинетической теории:
Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде
называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия — давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).
1. Изотермический процесс
Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.
Если Т =const, то
Закон Бойля-Мариотта
Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p1V1=p2V2 при Т = const
График процесса, происходящего при постоянной температуре, называется изотермой.
2. Изобарный процесс
Процесс изменения состояния термодинамической системы при постоянном давлении называют
изобарным.
Закон Гей-Люссака
Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:
Если газ, имея объем V0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать
Обозначив
получим V=V0T
Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой.
3. Изохорный процесс
Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то
Закон Шарля
Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:
Если газ, имея объем V0,находится при нормальных условиях:
а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р, то можно записать
График процесса, происходящего при постоянном объеме, называется изохорой.
Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?
Из уравнения состояния идеального газа
определим величину давления:
Ответ: давление сжатого воздуха равно 8,2 *10 6 Па.
На этом уроке мы вспомним, что такое физика, а также три способа изучения физических явлений: наблюдение, эксперимент и моделирование. Также мы познакомимся с первым разделом физики, в котором изучается движение тел (механикой), и узнаем, из каких основных частей состоит этот раздел.
Введение
Уроки физики в 10-м классе будут посвящены многим разделам, и первый из них – это механика. Но прежде вспомним, что такое физика и какие способы изучения физических явлений существуют.
Физика. Способы изучения физических явлений
«Физика» является по происхождению греческим словом со значением «природа», но надо понимать, что физика изучает неживую природу.
Физика – это наука, изучающая наиболее общие свойства тел и явлений неживой природы.
Методы изучения физических явлений:
- наблюдение;
- эксперимент;
- моделирование.
Наблюдение – самый старый способ изучения. До средних веков ученые всего мира изучали физические явления в основном при помощи наблюдений. Считается, что первым человеком, который проявил себя в наблюдении, был Аристотель (см. рис. 1), древнегреческий философ и ученый.
Рис. 1. Аристотель (384–322 до н. э.) (Источник)
Примерно в средние века начинает развиваться второй способ исследования физики – эксперимент. Одним из самых известных экспериментаторов того времени является Галилео Галилей, итальянский физик, астроном и философ (см. рис. 2).
Рис. 2. Галилео Галилей (1564-1642) (Источник)
Физический эксперимент – воспроизведение природных или создание новых физических явлений и процессов в определенных условиях с целью исследования, испытания.
На основе наблюдений и физических экспериментов можно строить различные догадки, гипотезы, придумывать объяснения – модели, использовать доступную математику и компьютерное моделирование для описания изучаемых явлений. Моделирование в физике является основой понимания сути явлений и процессов окружающего мира.
Если модель построена правильно, то она позволяет предусмотреть и результаты других экспериментов и наблюдений – даже таких, которые еще никто и никогда не проводил.
Указанные выше исследования связаны между собой. Сначала мы наблюдаем то, как двигаются планеты; затем ставим опыты о движении тел на Земле или относительно нее. После моделирования такого движения, можно получить определенный закон.
В результате исследований выводятся закономерности. Однако прежде всего вводятся характеристики физических явлений (температура, скорость). После на основе взаимосвязей между этими физическими величинами выводятся физические законы, предлагаются гипотезы, которые проверяются практикой, и затем появляется физическая теория.
Механика
Механическое движение тел изучается в разделе физики, который называется механикой.
Слово «механика» греческое и переводится на русский язык как «искусство построения машин».
Главная задача механики – определение местоположения тела в любой момент времени.
Движение – это изменение положения тела в пространстве с течением времени относительно других тел.
Для того чтобы охарактеризовать движение, необходимо ввести такие важные понятия, как система отсчета, которая состоит из системы координат, счетчик времени, и обязательно тело отсчета, относительно которого мы определяем движение. Также необходимо ввести характеристики движения. Это в первую очередь пройденный путь, перемещение, скорость, ускорение.
Одна из основных частей механики, которая называется кинематикой, рассматривает движение тел без выяснения причин этого движения. Кинематика отвечает на вопрос: как движется тело? Другой важной частью механики является динамика, которая рассматривает действие одних тел на другие как причину движения. Динамика отвечает на вопрос: почему тело движется именно так, а не иначе.
Список литературы
- Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
- Касьянов В.А. Физика 10. – М.: Дрофа, 2000.
- М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др. Физика: Механика 10. – М.: Дрофа, 2004.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «videouroki.net» (Источник)
- Интернет-портал «worldofscience.ru» (Источник)
- Интернет-портал «ido.tsu.ru» (Источник)
Домашнее задание
- Какова главная задача механики?
- Какие методы изучения физических явлений вы знаете?
- Вопросы в конце параграфов 1–5. Касьянов В.А. Физика 10 (см. список рекомендованной литературы)
Виды тел в физике
В зависимости от того, из чего состоят физические тела, различают несколько их видов. Так, они бывают:
- твёрдыми;
- жидкими;
- газообразными.
В первом случае в их составе — твёрдые вещества, и они имеют определённую форму. Можно привести такие примеры физических тел: песчинка, валун, автомобиль, стол. В окружающем человека мире их множество — как природные, так и рукотворные. Последние называются предметами.
Второй вид — жидкие объекты, например, вода в стакане. Их характерная черта состоит в том, что они не имеют собственной формы и принимают очертания предмета, внутри которого находятся. Так, жидкость в стакане будет иметь одну форму, в аквариуме или бензобаке — другую.
Третий вид — газообразные. Для них характерно то, что при отсутствии ограничений они свободно распространяются в окружающей среде. Их очертания (форма), как и во втором случае, определяются границами внешнего твёрдого объекта (ёмкости). В отличие от жидких, в соответствии со свойствами газов, они заполняют весь доступный объём.
Принципиальная разница в свойствах
Твёрдые, жидкие и газообразные тела обладают значительными отличиями. С точки зрения физики, они вызваны разным строением веществ, из которых эти объекты состоят, и разной степенью притяжения их молекул. Так, твёрдые вещества бывают:
- Кристаллическими — расположение молекул или атомов (ионов) в них строго упорядочено.
- Аморфными — не имеют определённого порядка расположения.
- Высокомолекулярными, в которых положение атомов в молекулах определено, но сами молекулы располагаются в веществе хаотично.
Частицы в твёрдом веществе и, соответственно, твёрдом физическом объекте, сильно притягиваются друг к другу и находятся в постоянном движении. В жидкости притяжение слабее, но все же его достаточно для того, чтобы такие вещества сохраняли свою структуру, но не хватает для удержания формы жидких веществ, поэтому под действием силы тяжести жидкости принимают форму сосуда.
Связь между структурными частицами в газах ещё более слабая. Молекулы (атомы) в них расположены на расстоянии, значительно превышающем собственный размер частиц. Поэтому газы можно сильно сжать, но формы они не имеют, заполняя весь предоставленный объём.
Свойства веществ определяют характеристики состоящих или изготовленных из них объектов.
Текучесть как свойство
Несмотря на значительные отличия, у твёрдых и жидких тел есть и сходные свойства. Существуют так называемые мягкие объекты, занимающие промежуточное положение и обладающие свойствами и одних, и других. Например, характерную для жидкостей текучесть могут показывать и твёрдые объекты или вещества, такие как сапожный вар, лёд, даже некоторые металлы. Последние демонстрируют свойства жидкостей при воздействии высокого давления.
Так, если соединить два металлических куска в необходимой последовательности, можно под высоким давлением получить прочное соединение — они как бы спаяются в единое целое. Интересно, что нагревать их до температуры плавления для этого не потребуется. Таким методом на основе диффузии (взаимного проникновения частиц) получают некоторые металлические сплавы.
Простые и составные
Применяется ещё одна классификация, в зависимости от того, имеются ли в телах составные части. Так, составным называют такое из них, которое имеет неоднородное строение и представляет собой комбинацию (соединение) нескольких простых, считающихся однородными. Такая классификация была принята для проведения упрощённых расчётов при работе с физическими телами, в которых не учитываются изменения внутреннего состояния реальных объектов, а также разрушения вследствие приложенной извне силы.
Например, человека, при изучении его путём теоретических исследований в качестве физического объекта, корректно рассматривать, как совокупность простых форм — цилиндров, шаров (если пренебречь тем, что любое человеческое тело имеет полости).
Тела и вещества
Из определения физического тела следует, что обозначаться этим термином могут абсолютно все предметы вокруг, созданные как человеком, так и природой. Кристаллики соли, предметы мебели и оргтехники, воздух в воздушном шаре, вода в стакане — все они имеют признаки физических тел: определённый объём и массу, размеры и т. д.
Все физические объекты состоят из различных веществ. Чтобы разобраться, что в физике понимают под термином «физическое тело», необходимо различать эти понятия. Слово «вещество» — название качественного проявления материи. В физике его рассматривают как форму материи, не имеющую заряда и обладающую массой покоя. С точки зрения химии, вещество — вид материи, состоящий из молекул, ионов или атомов, обладающий определёнными химическими свойствами, а значит, и вступающий в те или иные химические реакции. Изучать вещества в рамках соответствующих задач могут как физика, так и химия.
Вещество образует физический объект, занимая определённое свободное пространство. Так, золото — это вещество, а золотое кольцо — тело. Другой пример: вода является веществом, а её капля или вода в ёмкости — тело.
Принятые в науке приближения
В современной физике в определённых случаях рассматривают некие абстрактные тела с идеальными характеристиками. Это прежде всего касается механики. В этом разделе рассматривается движение идеальных физических точек, которые не имеют массы и прочих физических свойств. Для поставленных задач эти величины не имеют значения, ими можно пренебречь.
При расчётах также нередко используется абстрактное понятие абсолютно твёрдого тела. Отличаться от обычных оно будет отсутствием смещения центра массы и неподверженностью любым деформациям.
Абсолютно чёрное тело — ещё одна абстракция, используемая в термодинамике. Под ней понимают объект, который способен поглотить абсолютно любое электромагнитное излучение, достигшее его поверхности. Стоит отметить, что оно само может испускать излучение, если таковы условия задачи, и визуально может быть не только чёрным. То, каким будет спектр его излучения, связано только с температурой абсолютно чёрного объекта.
Ещё одно приближение: любой рассматриваемый в физической задаче предмет по умолчанию считается шарообразным, если его форма не имеет значения.
Природные явления и тела
Возникновение физической науки связано именно с необходимостью исследования поведения физических объектов и их взаимодействия между собой, а также с природными явлениями. Так, создание рукотворных предметов особой конструкции способно задержать движение природной стихии во время шторма, защитить от ураганов. Катастрофические последствия землетрясений для людей преодолеваются путём проектирования и возведения строений особой формы, обладающих определёнными свойствами.
Другой пример: создание автомобиля особой конструкции, позволяющей уменьшить его повреждения при контакте с другими твёрдыми объектами во время автокатастрофы. Всё это стало возможным, благодаря изучению закономерностей взаимодействия физических объектов (тел) между собой, с природными и другими явлениями.
Пройти этот сложный путь физика смогла за много столетий и самые значительные открытия, несомненно, ещё впереди.