Сделать вывод какие свойства основные или кислотные проявляет оксида магния

Сделать вывод какие свойства основные или кислотные проявляет оксида магния thumbnail

Оксид магния, свойства, получение, химические реакции.

Сделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магнияСделать вывод какие свойства основные или кислотные проявляет оксида магния

Оксид магния – неорганическое вещество, имеет химическую формулу MgO.

Краткая характеристика оксида магния

Физические свойства оксида магния

Получение оксида магния

Химические свойства оксида магния

Химические реакции оксида магния

Применение и использование оксида магния

Краткая характеристика оксида магния:

Оксид магния – неорганическое вещество белого цвета.

Так как валентность магния равна двум, то оксид магния содержит один атом кислорода и один атом магния.

Химическая формула оксида магния MgO.

Плохо растворяется в воде, вступает с ней в реакцию.

Легкий, рыхлый порошок, легко впитывает воду.

Физические свойства оксида магния:

Наименование параметра:Значение:
Химическая формулаMgO
Синонимы и названия иностранном языкеmagnesium oxide (англ.)

магнезия жженая (рус.)

магния окись (устар. рус.)

Тип веществанеорганическое
Внешний видбелый порошок
Цветбелый
Вкус—*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м33580
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см33,58
Температура кипения, °C3600
Температура плавления, °C2825
Молярная масса, г/моль40,3044

* Примечание:

— нет данных.

Получение оксида магния:

Оксид магния получают обжигом минералов магнезита и доломита.

Он получается в результате химической реакции – термического разложения карбоната кальция и карбоната магния:

CaMg(CO3)2 → CaО + MgО + СО2 (t = 900-1200 oC);

CaCO3·MgCO3 → CaО + MgО + СО2 (t = 900-1200 oC);

MgCO3 → MgО + СО2 (t > 650 oC);

CaCO3 → CaО + СО2 (t = 900-1200 oC).

CaMg(CO3)2, CaCO3·MgCO3 – химическая формула доломита.

MgCO3 – химическая формула магнезита.

Это промышленный способ получения оксида магния.

Химические свойства оксида магния. Химические реакции оксида магния:

Оксид магния относится к основным оксидам.

Химические свойства оксида магния аналогичны свойствам основных оксидов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция оксида магния с водородом:

MgО + H2 → Mg + H2О.

В результате реакции образуется магний и вода.

2. реакция оксида магния с углеродом:

MgО + С → Mg + СО (t  = 2000 oC).

В результате реакции образуется магний и оксид углерода.

3. реакция оксида магния с серой:

2MgО + 3S → 2MgS + SО2.

В результате реакции образуется сульфид магния и оксид серы.

4. реакция оксида магния с азотом:

2MgО + N2 → 2Mg + 2NО.

В результате реакции образуется магний и оксид азота.

5. реакция оксида магния с кремнием:

2MgО + Si → 2Mg + SiО2.

В результате реакции образуется магний и оксид кремния.

6. реакция оксида магния с калием:

MgО + 2K → Mg + K2О.

В результате реакции образуется магний и оксид калия.

7. реакция оксида магния с кальцием:

MgО + Са → Mg + СаО (t  = 1300 oC).

В результате реакции образуется магний и оксид кальция.

8. реакция оксида магния с алюминием:

3MgО + 2Al → 3Mg + Al2О3.

В результате реакции образуется магний и оксид алюминия.

9. реакция оксида магния с хлором и углеродом:

MgO + Cl2 + С → MgCl2 + СО (t  = 800-1000 oC).

В результате реакции образуется хлорид магния и оксид углерода.

10. реакция оксида магния с водой:

MgО + Н2О → Mg(ОН)2 (t  = 100-125 oC).

Оксид магния реагирует с водой, образуя гидроксид магния.

11. реакция оксида магния с оксидом углерода (углекислым газом):

MgО + СО2 → MgСО3.

Оксид магния реагирует с углекислым газом (являющийся кислотным оксидом), образуя соль – карбонат магния.

12. реакция оксида магния с оксидом серы: 

MgО + SО2 → MgSО3;

MgО + SО3 → MgSО4. 

Оксид серы также является кислотным оксидом. В результате реакции образуется соответственно соль – в первом случае – сульфит магния, во втором случае – сульфат магния.

13. реакция оксида магния с оксидом кремния:

MgО + SiО2 → MgSiО3 (t = 1100-1200 oC).

Оксид кремния также является кислотным оксидом. В результате реакции образуется соль – силикат магния.

14. реакция оксида магния с оксидом фосфора:

3MgO + P2O5 → Mg3(PO4)2;

3MgO + P2O3 → Mg3(PO3)2;

Оксид фосфора также является кислотным оксидом. В результате реакции образуется соль соответственно: ортофосфат магния и фосфит магния.

15. реакция оксида магния с оксидом алюминия:

MgО + Al2O3 → MgAl2О4 (t = 1600 °C).

Оксид алюминия является амфотерным оксидом. Это значит, что как амфотерный оксид оксид алюминия проявляет свойства как кислотных, так и основных соединений. В результате реакции образуется соль – алюминат магния (шпинель).

16. реакция оксида магния с оксидом железа:

MgО + Fe2O3 → MgFe2О4 (to).

В результате реакции образуется соль – феррит магния. Реакция протекает при прокаливании реакционной смеси.

17. реакция оксида магния с оксидом азота:

MgО + 2N2О5 → Mg(NO3)2.

В результате реакции образуются соль – нитрат магния.

18. реакция оксида магния с плавиковой кислотой:

MgO + 2HF → MgF2 + H2O.

В результате химической реакции получается соль – фторид магния и вода.

19. реакция оксида магния с азотной кислотой:

MgO + 2HNO3 → 2Mg(NO3)2 + H2O.

В результате химической реакции получается соль – нитрат магния и вода.

Аналогично проходят реакции оксида магния и с другими кислотами.  

20. реакция оксида магния с бромистым водородом (бромоводородом):

MgO + 2HBr → MgBr2 + H2O.

В результате химической реакции получается соль – бромид магния и вода.

21. реакция оксида магния с йодоводородом:

MgO + 2HI → MgI2 + H2O.

В результате химической реакции получается соль – йодид магния и вода.

22. реакция оксида магния с оксидом кальция и кремнием:

2MgO + CaO + Si → CaSiO3 + 2Mg.

В результате химической реакции получается соль – силикат кальция и магний.

23. реакция оксида магния с хлоридом натрия:

MgO + 2NaCl → MgCl2 + Na2O.

В результате химической реакции получается соль – хлорид магния и оксид натрия.

24. реакция оксида магния с хлоридом железа:

3MgO + 2FeCl3 → 3MgCl2 + Fe2O3.

В результате химической реакции получается соль – хлорид магния и оксид железа.

25. реакция оксида магния с гидроксидом калия:

MgO + 2KOH → Mg(OH)2 + K2O.

В результате химической реакции получается гидроксид магния и оксид калия.

Применение и использование оксида магния:

Оксид магния используется для производства огнеупоров, цементов, очистки нефтепродуктов, как наполнитель при производстве резины, в качестве пищевой добавки E-530.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

оксид магния реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие оксида магния
реакции с оксидом магния

Коэффициент востребованности
5 431

Источник

Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CaO + H2O → Ca(OH)2

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочиОсновные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидамиРеагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид  + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи. При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

K2O + Al2O3 → 2KAlO2

CuO + Al2O3 ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2—. Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:

Сделать вывод какие свойства основные или кислотные проявляет оксида магния

Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe2+ можно окислить до иона Fe3+).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO

Сделать вывод какие свойства основные или кислотные проявляет оксида магния

Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

Fe2O3 + CO = Al2O3  + CO2

CuO + CO = Cu + CO2

Сделать вывод какие свойства основные или кислотные проявляет оксида магния

4.2. Восстановление водородом.

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия.  Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O

Сделать вывод какие свойства основные или кислотные проявляет оксида магния

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например, оксид цинка взаимодействует с алюминием:

3ZnO + 2Al  =  Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний.  А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например, цезий взрывается на воздухе.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например: алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al  =  Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Сделать вывод какие свойства основные или кислотные проявляет оксида магния

Железо можно вытеснить из оксида с помощью алюминия:

2Fe2O3 + 4Al → 4Fe + 2Al2O3

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например, аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe2+, Cr2+, Mn2+ и др.) могут выступать в качестве восстановителей.

Например, оксид железа (II) можно окислить кислородом до оксида железа (III):

4FeO + O2 = 2Fe2O3

Источник

Взаимодействие оксидов с водой

ПравилоКомментарий
Основный оксид + H2O → Щелочь

Реакция идет, если образуется растворимое основание, а также Ca(OH)2:
Li2O + H2O → 2LiOH
Na2O + H2O → 2NaOH
K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2
SrO + H2O → Sr(OH)2
BaO + H2O → Ba(OH)2

MgO + H2O → Реакция не идет, ак как Mg(OH)2 нерастворим*
FeO + H2O → Реакция не идет, так как Fe(OH)2 нерастворим
CrO + H2O → Реакция не идет, так как Cr(OH)2 нерастворим
CuO + H2O → Реакция не идет, так как Cu(OH)2 нерастворим

Амфотерный оксидАмфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют
Кислотный оксид + H2O → Кислота

Все реакции идут за исключением SiO2 (кварц, песок):
SO3 + H2O → H2SO4
N2O5 + H2O → 2HNO3
P2O5 + 3H2O → 2H3PO4 и т.д.

SiO2 + H2O → реакция не идет

* Источник: [2] «Я сдам ЕГЭ. Курс самоподготовки», стр. 143.

Взаимодействие оксидов друг с другом

1. Оксиды одного типа друг с другом не взаимодействуют:

Na2O + CaO → реакция не идет
CO2 + SO3 → реакция не идет

2.  Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO2, SO2, о них подробнее ниже):

Na2O + SO3 → Na2SO4
CaO + CO2 → CaCO3
Na2O + ZnO → Na2ZnO2

Взаимодействие оксидов с кислотами

1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:

Na2O + HNO3 → NaNO3 + H2O
ZnO + 2HCl → ZnCl2 + H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

Исключением является очень слабая нерастворимая (мета)кремниевая кислота H2SiO3. Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.  
CuO + H2SiO3 → реакция не идет.

2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:

SO2 + 2H2S → 3S + 2H2O
SO3 + H2S → SO2­ + H2O

SiO2 + 4HF(нед.) → SiF4 + 2H2O

С кислотами-окислителями (только если оксид можно окислить):
SO2 + HNO3 + H2O → H2SO4 + NO

Взаимодействие оксидов с основаниями

1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.

2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:

SiO2 + 2NaOH → Na2SiO3 +H2O
CO2 + 2NaOH → Na2CO3 + H2O
CO2 + NaOH → NaHCO3 (если CO2 в избытке)

3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:

а) Реакциях с растворами щелочей:

ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)

б) Сплавление с твердыми щелочами:

ZnO + 2NaOH → Na2ZnO2 + H2O (цинкат натрия)
(кислота: H2ZnO2)
BeO + 2NaOH → Na2BeO2 + H2O (бериллат натрия)
(кислота: H2BeO2)
Al2O3 + 2NaOH → 2NaAlO2 + H2O (алюминат натрия)
(кислота: HAlO2)

Взаимодействие оксидов с солями

1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:

SiO2 + CaCO3 → CaSiO3 + CO2­
P2O5 + 3CaCO3 → Ca3(PO4)2 + 3CO2­
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
ZnO + 2KHCO3 → K2ZnO2 + 2CO2 + H2O

SiO2 + K2SO3 → K2SiO3 + SO2­
ZnO + Na2SO3 → Na2ZnO2 + SO2­

Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K2CO3 + SO2 → K2SO3 + CO2­ (H2CO3 слабее и менее устойчива, чем H2SO3)

2. Растворенный в воде CO2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO2 + H2O + CaCO3 → Ca(HCO3)2
CO2 + H2O + MgCO3 → Mg(HCO3)2

В тестовых заданиях такие реакции могут быть записаны как:
MgCO3 + CO2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.

Это один из способов получения кислых солей.

Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):

1. Реакции с CO, C и H2:

CuO + C →  Cu + CO­  
CuO + CO →  Cu + CO2
CuO + H2 →  Cu + H2O­                     

ZnO + C →  Zn + CO­
ZnO + CO →  Zn + CO2
ZnO + H2 →  Zn + H2O­

PbO + C →  Pb + CO
PbO + CО →  Pb + CO2­
PbO + H2 →  Pb + H2O

FeO + C →  Fe + CO
FeO + CО →  Fe + CO2­
FeO + H2 →  Fe + H2O

Fe2O3 + 3C →  2Fe + 3CO
Fe2O3 + 3CО →  2Fe + 3CO2
Fe2O3 + 3H2 →  2Fe + 3H2O­

WO3 + 3H2 → W + 3H2O

2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:

CaO + 3C → CaC2 + 3CO
2Al2O3 + 9C → Al4C3 + 6CO

3. Восстановление более активным металлом:

3FeO + 2Al →  3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3.

4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:

2P2O5 + 5C → 4P + 5CO2
SO2 + C → S + CO2
2NO + C → N2 + CO2
2N2O + C → 2N2 + CO2
SiO2 + 2C → Si + 2CO

Только оксиды азота и углерода реагируют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

SiO2 + H2 → реакция не идет.

В случае углерода восстановления до простого вещества не происходит:
CO + 2H2 <=> CH3OH (t, p, kt)

Особенности свойств оксидов CO2 и SO2

1. Не реагируют с амфотерными гидроксидами:

CO2 + Al(OH)3 → реакция не идет

2. Реагируют с углеродом:

CO2 + C → 2CO­
SO2 + C → S + CO2­

3. С сильными восстановителями SO2 проявляет свойства окислителя:

SO2 + 2H2S → 3S + 2H2O
SO2 + 4HI → S + 2I2 + 2H2O
SO2 + 2C → S + CO2
SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

4. Сильные окислители окисляют SO2:

SO2 + Cl2 <=> SO2Cl2
SO2 + Br2 <=> SO2Br2
SO2 + NO2 →  SO3 + NO
SO2 + H2O2 →  H2SO4

5SO2 + 2KMnO4 +2H2O →  2MnSO4 + K2SO4 + 2H2SO4
SO2 + 2KMnO4 + 4KOH →  2K2MnO4 +K2SO4 + 2H2O

SO2 + HNO3 + H2O → H2SO4 + NO

6. Оксид углерода (IV) CO2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:

CO2 + 2Mg → 2MgO + C (t)

Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)

1. Необходимо помнить, что все оксиды азота являются сильными окислителями. Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах. Нужно лишь знать основные восстановители, такие как C, CO, H2, HI и йодиды, H2S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.

2NO2 + 4CO&nbsp → N2 + 4CO2
2NO2 + 2S → N2 + 2SO2
2NO2 + 4Cu → N2 + 4CuO

N2O5 + 5Cu → N2 + 5CuO
2N2O5 + 2KI → I2 + 2NO2 + 2KNO3
N2O5 + H2S → 2NO2 + S + H2O

2NO + 2H2 → N2 + 2H2O
2NO + C → N2 + CO2
2NO + Cu → N2 + 2Cu2O
2NO + Zn → N2 + ZnO
2NO + 2H2S → N2 + 2S + 2H2O

N2O + H2 → N2 + H2O
2N2O + C → 2N2 + CO2
N2O + Mg → N2 + MgO

2. Могут окисляться сильными окислителями (кроме N2O5, так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH →  2KNO3 + 3KCl + H2O
8NO + 3HClO4 + 4H2O →  8HNO3 + 3HCl
14NO + 6HBrO4 + 4H2O →  14HNO3 + 3Br2
NO + KMnO4 + H2SO4 →  HNO3 + K2SO4 + MnSO4 + H2O
5N2O + 2KMnO4 + 3H2SO4 →  10NO + 2MnSO4 + K2SO4 + 3H2O.

3. Несолеобразующие оксиды N2O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).

Химические свойства CO как сильного восстановителя

1. Реагирует с некоторыми неметаллами:

2CO + O2 → 2CO2
CO + 2H2 <=> CH3OH (t, p, kt)
CO + Cl2 <=> COCl2 (фосген)

2. Реагирует с некоторыми сложными соединениями:

CO + KOH → HCOOK
CO + Na2O2 → Na2CO3
CO + Mg → MgO + C (t)

3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:

CO + CuO → Cu + CO2
3CO + Fe2O3 → 2Fe + 3CO2
3CO + Cr2O3 → 2Cr + 3CO2

2CO + SO2 → S + 2CO2­ (Al2O3, 500°C)
5CO + I2O5 → I2 + 5CO2­
4CO + 2NO2 → N2 + 4CO2

3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.

Химические свойства SiO2

1. Взаимодействует с активными металлами:

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

2. Взаимодействует с углеродом:

SiO2 + 2C → Si + 2CO
(Согласно пособию «Курс самоподготовки» Каверина, SiO2 + CO → реакция не идет)

3  С водородом SiO2 не взаимодействует.

4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:

SiO2 + 2NaOH → Na2SiO3 +H2O
SiO2 + CaO → CaSiO3
SiO2 + BaO → BaSiO3
SiO2 + Na2CO3 → Na2SiO3 + CO2
SiO2 + CaCO3 → CaSiO3 + CO2

SiO2 + Cu(OH)2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).

5. Из кислот SiO2 взаимодействует только с плавиковой кислотой:

SiO2 + 4HF → SiF4 + 2H2O.

Свойства оксида P2O5 как сильного водоотнимающего средства

HCOOH + P2O5 → CO + H3PO4
2HNO3 + P2O5 → N2O5 + 2HPO3
2HClO4 + P2O5 → Cl2O7 + 2HPO3.

Термическое разложение некоторых оксидов

В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины:
Основные:
4CuO → 2Cu2O + O2 (t)
2HgO → 2Hg + O2 (t)

Кислотные:
2SO3 → 2SO2 + O2 (t)
2N2O → 2N2 + O2 (t)
2N2O5 → 4NO2 + O2 (t)

Амфотерные:
4MnO2 → 2Mn2O3 + O2 (t)
6Fe2O3 → 4Fe3O4 + O2 (t).

Особенности оксидов NO2, ClO2 и Fe3O4

1. Диспропорционирование: оксидам NO2 и ClO2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO2 и хлорат и хлорит в случае ClO2:

2N+4O2 + 2NaOH → NaN+3O2 + NaN+5O3 + H2O

4NO2 + 2Ba(OH)2 → Ba(NO2)2 + Ba(NO3)2 + 2H2O

2NO2 + Na2CO3 →  NaNO3 + NaNO2 + CO2

В аналогичных реакциях с кислородом образуются только соединения с N+5, так как он окисляет нитрит до нитрата:

4NO2 + O2 + 4NaOH → 4NaNO3 + 2H2O

4NO2 + O2 + 2H2O → 4HNO3              (растворение в избытке кислорода)

2Cl+4O2 + H2O → HCl+3O2 + HCl+5O3
2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O 

2. Оксид железа (II,III) Fe3O4 (FeO·Fe2O3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 4H2O.

Источник