С какими свойствами химических элементов связаны названия их семейств

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 апреля 2020;
проверки требуют 2 правки.
Список химических элементов упорядочен в порядке возрастания атомных номеров с возможностью сортировки по другим параметрам. В таблице приводятся название химического элемента, используемый для его обозначения символ (признанный IUPAC, Международным союзом теоретической и прикладной химии), группа и период в Периодической системе химических элементов, относительная атомная масса элемента (с учётом их природной (процентной) распространённости в земной коре и атмосфере); а также плотность, температура плавления, температура кипения простого вещества, и год открытия, фамилия первооткрывателя. Цвета строк отвечают семействам элементов:
№ | Название | Символ | Латинское название | Период, группа | Атомная масса (а.е.м.) | Плотность, г/см³ (при 20 °C) | Температура плавления (°C) | Температура кипения (°C) | Год открытия | Первооткрыватель |
---|---|---|---|---|---|---|---|---|---|---|
1 | Водород | H | Hydrogenium | 1, 1 | 1,00794 (7)[1][2][3] | 0,08988 г/л | -259,1 | -252,9 | 1766 | Кавендиш |
2 | Гелий | He | Helium | 1, 18 | 4,002602 (2)[1][3] | 0,17 г/л | -272,2 (при 2,5 МПа) | -268,9 | 1895 | Локьер, Жансен (в спектре Солнца), Рамзай (на Земле) |
3 | Литий | Li | Lithium | 2, 1 | 6,941 (2)[1][2][3][4] | 0,53 | 180,5 | 1317 | 1817 | Арфведсон |
4 | Бериллий | Be | Beryllium | 2, 2 | 9,012182 (3) | 1,85 | 1278 | 2970 | 1797 | Воклен |
5 | Бор | B | Borum | 2, 13 | 10,811 (7)[1][2][3] | 2,46 | 2300 | 2550 | 1808 | Дэви и Гей-Люссак |
6 | Углерод | C | Carboneum | 2, 14 | 12,0107 (8)[1][3] | 3,51 | 3550 | 4827 | доисторический период | неизвестен |
7 | Азот | N | Nitrogenium | 2, 15 | 14,0067 (2)[1][3] | 1,17 г/л | -209,9 | -195,8 | 1772 | Резерфорд |
8 | Кислород | O | Oxygenium | 2, 16 | 15,9994 (3)[1][3] | 1,33 г/л | -218,4 | -182,9 | 1774 | Пристли и Шееле |
9 | Фтор | F | Fluorum | 2, 17 | 18,9984032 (5) | 1,58 г/л | -219,6 | -188,1 | 1886 | Муассан |
10 | Неон | Ne | Neon | 2, 18 | 20,1797 (6)[1][2] | 0,84 г/л | -248,7 | -246,1 | 1898 | Рамзай и Траверс |
11 | Натрий | Na | Natrium | 3, 1 | 22,98976928 (2) | 0,97 | 97,8 | 892 | 1807 | Дэви |
12 | Магний | Mg | Magnesium | 3, 2 | 24,3050 (6) | 1,74 | 648,8 | 1107 | 1808 | Дэви |
13 | Алюминий | Al | Aluminium | 3, 13 | 26,9815386 (8) | 2,70 | 660,5 | 2467 | 1825 | Эрстед |
14 | Кремний | Si | Silicium | 3, 14 | 28,0855 (3)[3] | 2,33 | 1410 | 2355 | 1824 | Берцелиус |
15 | Фосфор | P | Phosphorus | 3, 15 | 30,973762 (2) | 1,82 | 44 (P4) | 280 (P4) | 1669 | Бранд |
16 | Сера | S | Sulfur, Sulphur | 3, 16 | 32,065 (5)[1][3] | 2,06 | 113 | 444,7 | доисторический период | неизвестен |
17 | Хлор | Cl | Chlorum | 3, 17 | 35,453 (2)[1][2][3] | 2,95 г/л | -101 | -34,6 | 1774 | Шееле |
18 | Аргон | Ar | Argon | 3, 18 | 39,948 (1)[1][3] | 1,66 г/л | -189,4 | -185,9 | 1894 | Рамзай и Рэлей |
19 | Калий | K | Kalium, Calium | 4, 1 | 39,0983 (1) | 0,86 | 63,7 | 774 | 1807 | Дэви |
20 | Кальций | Ca | Calcium | 4, 2 | 40,078 (4)[1] | 1,54 | 839 | 1487 | 1808 | Дэви |
21 | Скандий | Sc | Scandium | 4, 3 | 44,955912 (6) | 2,99 | 1539 | 2832 | 1879 | Нильсон |
22 | Титан | Ti | Titanium | 4, 4 | 47,867 (1) | 4,51 | 1660 | 3260 | 1791 | Грегор и Клапрот |
23 | Ванадий | V | Vanadium | 4, 5 | 50,9415 (1) | 6,09 | 1890 | 3380 | 1801 | дель Рио |
24 | Хром | Cr | Chromium | 4, 6 | 51,9961 (6) | 7,14 | 1857 | 2482 | 1797 | Воклен |
25 | Марганец | Mn | Manganum, Manganesium | 4, 7 | 54,938045 (5) | 7,44 | 1244 | 2097 | 1774 | Ган |
26 | Железо | Fe | Ferrum | 4, 8 | 55,845 (2) | 7,87 | 1535 | 2750 | доисторический период | неизвестен |
27 | Кобальт | Co | Cobaltum | 4, 9 | 58,933195 (5) | 8,89 | 1495 | 2870 | 1735 | Брандт |
28 | Никель | Ni | Niccolum | 4, 10 | 58,6934 (2) | 8,91 | 1453 | 2732 | 1751 | Кронштедт |
29 | Медь | Cu | Cuprum | 4, 11 | 63,546 (3)[3] | 8,92 | 1083,5 | 2595 | доисторический период | неизвестен |
30 | Цинк | Zn | Zincum | 4, 12 | 65,409 (4) | 7,14 | 419,6 | 907 | доисторический период[источник не указан 1739 дней] | неизвестен |
31 | Галлий | Ga | Gallium | 4, 13 | 69,723 (1) | 5,91 | 29,8 | 2403 | 1875 | де Буабодран |
32 | Германий | Ge | Germanium | 4, 14 | 72,64 (1) | 5,32 | 937,4 | 2830 | 1886 | Винклер |
33 | Мышьяк | As | Arsenicum | 4, 15 | 74,92160 (2) | 5,72 | 613 | 613 (subl.) | около 1250 | Альберт Великий |
34 | Селен | Se | Selenium | 4, 16 | 78,96 (3)[3] | 4,82 | 217 | 685 | 1817 | Берцелиус |
35 | Бром | Br | Bromum | 4, 17 | 79,904 (1) | 3,14 | -7,3 | 58,8 | 1826 | Балар |
36 | Криптон | Kr | Krypton, Crypton | 4, 18 | 83,798 (2)[1][2] | 3,48 г/л | -156,6 | -152,3 | 1898 | Рамзай и Траверс |
37 | Рубидий | Rb | Rubidium | 5, 1 | 85,4678 (3)[1] | 1,53 | 39 | 688 | 1861 | Бунзен и Кирхгоф |
38 | Стронций | Sr | Strontium | 5, 2 | 87,62 (1)[1][3] | 2,63 | 769 | 1384 | 1790 | Кроуфорд |
39 | Иттрий | Y | Yttrium | 5, 3 | 88,90585 (2) | 4,47 | 1523 | 3337 | 1794 | Гадолин |
40 | Цирконий | Zr | Zirconium | 5, 4 | 91,224 (2)[1] | 6,51 | 1852 | 4377 | 1789 | Клапрот |
41 | Ниобий | Nb | Niobium | 5, 5 | 92,90638 (2) | 8,58 | 2468 | 4927 | 1801 | Хэтчетт |
42 | Молибден | Mo | Molybdaenum | 5, 6 | 95,94 (2)[1] | 10,28 | 2617 | 5560 | 1778 | Шееле |
43 | Технеций | Tc | Technetium | 5, 7 | [98,9063][5] | 11,49 | 2172 | 5030 | 1937 | Перрье и Сегре |
44 | Рутений | Ru | Ruthenium | 5, 8 | 101,07 (2)[1] | 12,45 | 2310 | 3900 | 1844 | Клаус |
45 | Родий | Rh | Rhodium | 5, 9 | 102,90550 (2) | 12,41 | 1966 | 3727 | 1803 | Волластон |
46 | Палладий | Pd | Palladium | 5, 10 | 106,42 (1)[1] | 12,02 | 1552 | 3140 | 1803 | Волластон |
47 | Серебро | Ag | Argentum | 5, 11 | 107,8682 (2)[1] | 10,49 | 961,9 | 2212 | доисторический период | неизвестен |
48 | Кадмий | Cd | Cadmium | 5, 12 | 112,411 (8)[1] | 8,64 | 321 | 765 | 1817 | Штромейер |
49 | Индий | In | Indium | 5, 13 | 114,818 (3) | 7,31 | 156,2 | 2080 | 1863 | Райх и Рихтер |
50 | Олово | Sn | Stannum | 5, 14 | 118,710 (7)[1] | 7,29 | 232 | 2270 | доисторический период | неизвестен |
51 | Сурьма | Sb | Stibium | 5, 15 | 121,760 (1)[1] | 6,69 | 630,7 | 1750 | доисторический период | неизвестен |
52 | Теллур | Te | Tellurium | 5, 16 | 127,60 (3)[1] | 6,25 | 449,6 | 990 | 1782 | Франц Йозеф Мюллер |
53 | Иод | I | Iodium, Jodium | 5, 17 | 126,90447 (3) | 4,94 | 113,5 | 184,4 | 1811 | Куртуа |
54 | Ксенон | Xe | Xenon | 5, 18 | 131,293 (6)[1][2] | 4,49 г/л | -111,9 | -107 | 1898 | Рамзай и Траверс |
55 | Цезий | Cs | Caesium | 6, 1 | 132,9054519 (2) | 1,90 | 28,4 | 690 | 1860 | Бунзен и Кирхгоф |
56 | Барий | Ba | Barium | 6, 2 | 137,327 (7) | 3,65 | 725 | 1640 | 1808 | Дэви |
57 | Лантан | La | Lanthanum | 6 | 138,90547 (7)[1] | 6,16 | 920 | 3454 | 1839 | Мосандер |
58 | Церий | Ce | Cerium | 6 | 140,116 (1)[1] | 6,77 | 798 | 3257 | 1803 | фон Хисингер и Берцелиус |
59 | Празеодим | Pr | Praseodymium | 6 | 140,90765 (2) | 6,48 | 931 | 3212 | 1895 | Ауэр фон Вельсбах |
60 | Неодим | Nd | Neodymium | 6 | 144,242 (3)[1] | 7,00 | 1010 | 3127 | 1895 | Ауэр фон Вельсбах |
61 | Прометий | Pm | Promethium | 6 | [146,9151][5] | 7,22 | 1080 | 2730 | 1945 | Маринский и Гленденин |
62 | Самарий | Sm | Samarium | 6 | 150,36 (2)[1] | 7,54 | 1072 | 1778 | 1879 | де Буабодран |
63 | Европий | Eu | Europium | 6 | 151,964 (1)[1] | 5,25 | 822 | 1597 | 1901 | Демарсе |
64 | Гадолиний | Gd | Gadolinium | 6 | 157,25 (3)[1] | 7,89 | 1311 | 3233 | 1880 | де Мариньяк |
65 | Тербий | Tb | Terbium | 6 | 158,92535 (2) | 8,25 | 1360 | 3041 | 1843 | Мосандер |
66 | Диспрозий | Dy | Dysprosium | 6 | 162,500 (1)[1] | 8,56 | 1409 | 2335 | 1886 | де Буабодран |
67 | Гольмий | Ho | Holmium | 6 | 164,93032 (2) | 8,78 | 1470 | 2720 | 1878 | Соре |
68 | Эрбий | Er | Erbium | 6 | 167,259 (3)[1] | 9,05 | 1522 | 2510 | 1842 | Мосандер |
69 | Тулий | Tm | Thulium | 6 | 168,93421 (2) | 9,32 | 1545 | 1727 | 1879 | Клеве |
70 | Иттербий | Yb | Ytterbium | 6 | 173,04 (3)[1] | 6,97 | 824 | 1193 | 1878 | де Мариньяк |
71 | Лютеций | Lu | Lutetium | 6, 3 | 174,967 (1)[1] | 9,84 | 1656 | 3315 | 1907 | Урбэн |
72 | Гафний | Hf | Hafnium | 6, 4 | 178,49 (2) | 13,31 | 2150 | 5400 | 1923 | Костер и де Хевеши |
73 | Тантал | Ta | Tantalum | 6, 5 | 180,9479 (1) | 16,68 | 2996 | 5425 | 1802 | Экеберг |
74 | Вольфрам | W | Wolframium | 6, 6 | 183,84 (1) | 19,26 | 3407 | 5927 | 1783 | Элюяр |
75 | Рений | Re | Rhenium | 6, 7 | 186,207 (1) | 21,03 | 3180 | 5873 | 1925 | Ноддак, Такке и Берг |
76 | Осмий | Os | Osmium | 6, 8 | 190,23 (3)[1] | 22,61 | 3045 | 5027 | 1803 | Теннант |
77 | Иридий | Ir | Iridium | 6, 9 | 192,217 (3) | 22,65 | 2410 | 4130 | 1803 | Теннант |
78 | Платина | Pt | Platinum | 6, 10 | 195,084 (9) | 21,45 | 1772 | 3827 | 1557 | Скалигер |
79 | Золото | Au | Aurum | 6, 11 | 196,966569 (4) | 19,32 | 1064,4 | 2940 | доисторический период | неизвестен |
80 | Ртуть | Hg | Hydrargyrum | 6, 12 | 200,59 (2) | 13,55 | -38,9 | 356,6 | доисторический период | неизвестен |
81 | Таллий | Tl | Thallium | 6, 13 | 204,3833 (2) | 11,85 | 303,6 | 1457 | 1861 | Крукс |
82 | Свинец | Pb | Plumbum | 6, 14 | 207,2 (1)[1][3] | 11,34 | 327,5 | 1740 | доисторический период | неизвестен |
83 | Висмут | Bi | Bismuthum | 6, 15 | 208,98040 (1) | 9,80 | 271,4 | 1560 | 1753 | Жоффруа |
84 | Полоний | Po | Polonium | 6, 16 | [208,9824][5] | 9,20 | 254 | 962 | 1898 | Мария и Пьер Кюри |
85 | Астат | At | Astatum | 6, 17 | [209,9871][5] | 302 | 337 | 1940 | Д. Р. Корсон, К. Р. Маккензи и Э. Сегре | |
86 | Радон | Rn | Radon | 6, 18 | [222,0176][5] | 9,23 г/л | -71 | -61,8 | 1900 | Дорн |
87 | Франций | Fr | Francium | 7, 1 | [223,0197][5] | 1,87 | 27 | 677 | 1939 | Перей |
88 | Радий | Ra | Radium | 7, 2 | [226,0254][5] | 5,50 | 700 | 1140 | 1898 | Мария и Пьер Кюри |
89 | Актиний | Ac | Actinium | 7 | [227,0278][5] | 10,07 | 1047 | 3197 | 1899 | Дебьерн |
90 | Торий | Th | Thorium | 7 | 232,03806 (2)[5][1] | 11,72 | 1750 | 4787 | 1829 | Берцелиус |
91 | Протактиний | Pa | Protactinium | 7 | 231,03588 (2)[5] | 15,37 | 1554 | 4030 | 1917 | Содди, Кранстон и Ган |
92 | Уран | U | Uranium | 7 | 238,02891 (3)[5][1][2] | 18,97 | 1132,4 | 3818 | 1789 | Клапрот |
93 | Нептуний | Np | Neptunium | 7 | [237,0482][5] | 20,48 | 640 | 3902 | 1940 | Макмиллан и Абелсон |
94 | Плутоний | Pu | Plutonium | 7 | [244,0642][5] | 19,74 | 641 | 3327 | 1940 | Сиборг |
95 | Америций | Am | Americium | 7 | [243,0614][5] | 13,67 | 994 | 2607 | 1944 | Сиборг |
96 | Кюрий | Cm | Curium | 7 | [247,0703][5] | 13,51 | 1340 | 1944 | Сиборг | |
97 | Берклий | Bk | Berkelium | 7 | [247,0703][5] | 13,25 | 986 | 1949 | Сиборг | |
98 | Калифорний | Cf | Californium | 7 | [251,0796][5] | 15,1 | 900 | 1950 | Сиборг | |
99 | Эйнштейний | Es | Einsteinium | 7 | [252,0829][5] | 13,5 | 860 | 1952 | Сиборг | |
100 | Фермий | Fm | Fermium | 7 | [257,0951][5] | 1952 | Сиборг | |||
101 | Менделевий | Md | Mendelevium, Mendeleevium | 7 | [258,0986][5] | 1955 | Сиборг | |||
102 | Нобелий | No | Nobelium | 7 | [259,1009][5] | 1965 | Флёров | |||
103 | Лоуренсий | Lr | Lawrencium, Laurentium | 7, 3 | [266][5] | 1961 | Гиорсо | |||
104 | Резерфордий | Rf | Rutherfordium | 7, 4 | [267][5] | 23 | 1964/69 | Флёров | ||
105 | Дубний | Db | Dubnium | 7, 5 | [268][5] | 29 | 1967/70 | Флёров | ||
106 | Сиборгий | Sg | Seaborgium | 7, 6 | [269][5] | 35 | 1974 | Флёров | ||
107 | Борий | Bh | Bohrium | 7, 7 | [270][5] | 37 | 1976 | Оганесян | ||
108 | Хассий | Hs | Hassium | 7, 8 | [277][5] | 1984 | GSI (*) | |||
109 | Мейтнерий | Mt | Meitnerium | 7, 9 | [278][5] | 37,4 | 1982 | GSI | ||
110 | Дармштадтий | Ds | Darmstadtium | 7, 10 | [281][5] | 1994 | GSI | |||
111 | Рентгений | Rg | Roentgenium | 7, 11 | [282][5] | 1994 | GSI | |||
112 | Коперниций | Cn | Copernicium | 7, 12 | [285][5] | 1996 | GSI | |||
113 | Нихоний | Nh | Nihonium | 7, 13 | [286][5] | 2004 | ОИЯИ (*), LLNL (*) | |||
114 | Флеровий | Fl | Flerovium | 7, 14 | [289][5] | 1999 | ОИЯИ | |||
115 | Московий | Mc | Moscovium | 7, 15 | [290][5] | 2004 | ОИЯИ, LLNL | |||
116 | Ливерморий | Lv | Livermorium | 7, 16 | [293][5] | 2000 | ОИЯИ, LLNL | |||
117 | Теннессин | Ts | Tennessine | 7, 17 | [294][5] | 2010 | ОИЯИ | |||
118 | Оганесон | Og | Oganesson | 7, 18 | [294][5] | 2004 | ОИЯИ | |||
119 | Унуненний | Uue | Ununennium | |||||||
120 | Унбинилий | Ubn | Unbinilium | |||||||
121 | Унбиуний | Ubu | Unbiunium | |||||||
122 | Унбибий | Ubb | Unbibium | |||||||
123 | Унбитрий | Ubt | Unbitrium | |||||||
124 | Унбиквадий | Ubq | Unbiquadium | |||||||
125 | Унбипентий | Ubp | Unbipentium | |||||||
126 | Унбигексий | Ubh | Unbihexium | |||||||
127 | Унбисептий | Ubs | Unbiseptium |
Дальше — смотрите по атомному номеру… Расширенная периодическая таблица элементов.
Аббревиатуры[править | править код]
- GSI — Gesellschaft für Schwerionenforschung (Институт тяжёлых ионов), Виксхаузен, Дармштадт, Германия.
- ОИЯИ — Объединённый институт ядерных исследований, Дубна, Московская область, Россия (JINR, Joint Institute for Nuclear Research).
- LLNL — Lawrence Livermore National Laboratory (Ливерморская национальная лаборатория им. Э. Лоуренса), Ливермор, Калифорния, США.
- LBNL — Lawrence Berkeley National Laboratory (Национальная лаборатория имени Лоуренса в Беркли), Беркли, Калифорния, США.
Примечания[править | править код]
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Изотопный состав этого элемента различается в различных геологических образцах, и отклонения могут превышать указанную в таблице погрешность.
- ↑ 1 2 3 4 5 6 7 8 Изотопный состав элемента может различаться в различных продажных материалах, что может приводить к существенным отклонениям от приведённых значений.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Изотопный состав различается в земных материалах настолько, что более точный атомный вес не может быть приведён.
- ↑ Атомный вес продажного лития может варьироваться между 6,939 и 6,996, для получения более точного значения необходим анализ конкретного материала.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Данный элемент не имеет стабильных изотопов, и значение в скобках, например, [209], обозначает массовое число наиболее долгоживущего изотопа элемента или характерный изотопный состав.
Ссылки[править | править код]
- Atomic Weights of the Elements 2001, Pure Appl. Chem. 75(8), 1107—1122, 2003. Retrieved June 30, 2005. Atomic weights of elements with atomic numbers from 1-109 taken from this source.
- IUPAC Standard Atomic Weights Revised (2005).
- WebElements Periodic Table. Retrieved June 30, 2005. Atomic weights of elements with atomic numbers 110—116 taken from this source.
- M. E. Wieser. Atomic weights of the elements 2005 (IUPAC Technical Report) (англ.) // Pure Appl. Chem. : journal. — IUPAC, 2006. — Vol. 78, no. 11. — P. 2051—2066. — doi:10.1351/pac200678112051. (for atomic weights of elements with atomic numbers from 1-102)
- M. E. Wieser. IUPAC Standard Atomic Weights Revised (2007). IUPAC (2007). Дата обращения 7 июля 2008. Архивировано 5 января 2013 года.
- Atomic weights of the elements 2009 (IUPAC Technical Report). IUPAC (2010). Дата обращения 10 февраля 2012. Архивировано 5 января 2013 года.
- Sonzogni, Alejandro. Interactive Chart of Nuclides. National Nuclear Data Center: Brookhaven National Laboratory. Дата обращения 6 июня 2008. Архивировано 5 января 2013 года. (for atomic weights of elements with atomic numbers 103—118)
Урок по теме «Классификация химических элементов. Естественные семейства элементов и их характеристика»
Фахриева Эльмира Тиллабековна, учитель химии КГУ «общеобразовательная школа №155», г.Алматы
Раздел: химия
Класс: 8
Цель урока: Организация деятельности учащихся по восприятию, осмыслению и первичному запоминанию новых знаний и способов деятельности.
Задачи:
1 Образовательная: ознакомить с первыми попытками классификации химических элементов; рассмотреть семейства химических элементов; дать понятие об амфотерных элементах
2.Развивающая: развивать умения приводить примеры металлов, неметаллов, амфотерных элементов; доказывать, объяснять, по каким признакам химические элементы объединены в семейства.
3.Воспитывающая: воспитывать мотивы учения ,положительное отношение к знаниям; воспитывать познавательный интерес к предмету.
Тип урока: Изучение и первичное запоминание новых знаний и способов деятельности.
Форма организации урока: Лекция
Дидактическое обеспечение урока: ПСХЭ Д.И.Менделеева, коллекция «Металлы и сплавы», схема «Классификация химических элементов», таблица «Естественные семейства химических элементов».
Ход урока
1.Организационный этап.
2.Актуализация.
1)Фронтальный опрос.
1.Строение атома.
2.Планетарная модель строения атома.
3.В чем заключается физический смысл порядкового номера?
4.Состав атомного ядра. Протоны, нейтроны.
5.Что такое изотопы?
2)Уровневая работа.
Задание1. Пользуясь ПСХЭ Д.И.Менделеева, определите число протонов и нейтронов в ядрах атомов натрия, фосфора. (1 уровень)
Задание 2. Определите число протонов и нейтронов в ядрах следующих изотопов: а) 12С и13С; б) 20Ne и 23Ne. (2 уровень)
Задание3.В ядре изотопа одного из элементов отсутствуют нейтроны. Назовите этот элемент. (3 уровень)
3.Формирование новых понятий и способов деятельности.
1. Деление химических элементов на металлы и неметаллы.
Химические элементы
Металлы Неметаллы
Na, MgS, P, C
твердые, ковкие, пластичные, имеют различное агрегатное состояние,
проводят эл.ток. тепло непластичны, не проводят тепло и эл.ток
2.Амфотерные элементы.
Амфотерными называются элементы, проявляющие двойственную природу, их нельзя отнести ни к типичным металлам, ни к типичным неметаллам. Например: Ве, Zn, Al, Cr. Амфотерные элементы могу проявлять в химических реакциях как металлические, так и неметаллические свойства, т.е. обладают двойственными свойствами.
3.Естественные семейства химических элементов.
1.Понятие о естественном семействе.
2.Виды естественных семейств.
Естественные семейства химических элементов
Щелочные Галогены Щелочноземельные Семейство Благородные
металлы металлы кислорода газы
3.Характеристика естественных семейств химических элементов.
Таблица.
Естественные семейства химических элементов
№ | Название семейства | Элементы данного семейства | Особенности данного семейства |
1 | Щелочные металлы | Li, Na, K, Rb, Cs, Fr | 1.При взаимодействии с водой образуют щёлочи. 2.Мягкие, быстро окисляются кислородом, поэтому хранятся под слоем керосина, 3.В соединениях одновалентны. 4.Из всех металлов самые активные. |
2 | Галогены | F, Cl, Br, I, At | 1.Образуют простые вещества, молекулы которых состоят из 2х атомов: F2, Cl2, Br2, I2. 2.Высшая валентность в соединениях с кислородом YII. 3.С водородом образуют летучие соединения, в которых проявляют валентность I, например: НF. 4.С металлами образуют соли: NaF. 5.Ядовиты! 6. Из всех неметаллов самые активные. |
3 | Благородные (инертные) газы | He, Ne, Ar, Kr, Xe, Rn | 1.Одноатомные газы. 2.Не образуют соединений с водородом и металлами, т.е. проявляют валентность 0. 3. Некоторые из них в высших оксидах имеют валентность YIII , например: ХeO4. |
4 | Щелочноземельные металлы | Mg, Ca, Sr, Ba | 1.Оксиды этих Ме при взаимодействии с водой образуют щёлочи. 2.Все они в соединениях двухвалентные. 3.Образуют оксиды с общей формулой RO, которым соответствуют гидроксиды с общей формулой R(OH)2. |
5 | Элементы подгруппы кислорода | O, S, Se, Te | 1.Образуют кислотные оксиды с общей формулой RO3, где проявляют валентность YI. Этим оксидам соответствуют кислоты состава H2RO4. 2.Химические элементы S, Se, Teназывают халькогенами-«рождающие медные руды» 3.С водородом образуют соединения состава H2R. |
Примечание: Первое семейство учитель показывает учащимся, остальные они составляют самостоятельно, используя учебник.
4.Применение. Формирование умений и навыков.
Работа с учебником, п.20: закончить таблицу, дать характеристику остальным семействам химических элементов.
5.Этап информации о домашнем задании.
п.19, 20 (учебник), выучить таблицу «Естественные семейства химических элементов»
6.Подведение итогов урока.
Качественная оценка работе класса и отдельных учащихся
7.Этап рефлексии.
На уроке по теме «Попытки классификации химических элементов. Открытие периодического закона» дана подробная историческая справка о попытках классификации химических элементов учеными-химиками, формируется представление о структуре периодического закона химических элементов Д.И. Менделеева, подчеркивается значение этого закона для химической науки.
Тема: Периодический закон и Периодическая система химических элементов Д.И.Менделеева
Урок: Попытки классификации химических элементов. Открытие периодического закона
1. Триады Дёберейнера
Попытки классификации химических элементов начались задолго до открытия Д.И.Менделеевым периодического закона. Естествоиспытатели в начале XIX сталкивались с большими трудностями в этом направлении, потому что химических элементов было известно всего 63, а атомные массы были определены для них неточно.
Триады Дёберейнера.
В 1829 году немецкий химик И.В.Дёберейнер заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы. Он назвал их триадами.
Сущность данной классификации заключается в следующем: в каждой триаде есть средний элемент, масса атома которого будет равна средней арифметической массе двух крайних элементов.
Например, рассмотрим первую триаду: Li, Na, K.
Их атомные массы соответственно равны 7, 23, 39.
Система классификации И.В.Дёберейнера оказалась несовершенной. Некоторые триады не содержали тех элементов, которые были бы похожи с ними по химическим свойствам.
Так, например, триада, содержащая S, Se, Te , не содержала кислорода O.
Ошибка И.В.Дёберейнера заключалась в том, что он ограничил себя поиском тройственных союзов, т.е. триад.
Но И.В.Дёберейнер был первым из естествоиспытателей, который связал свойства химических элементов с их атомными массами. Все дальнейшие попытки классификации химических элементов основывались на связи масс атомов с их химическими свойствами.
2. Спираль Шанкурту
В середине XIX века появилось много работ ученых, которые пытались классифицировать химические элементы. Французский геолог и химик А.Э. Шанкуртуа в 1862 году предложил свою классификацию химических элементов.
Рис. 1. Спираль Шанкуртуа
Он расположил все известные к тому времени химические элементы в порядке возрастания их атомных масс, а полученный ряд нанес на поверхность цилиндра, по линии исходя из его основания под углом 45к плоскости основания, так называемая земная спираль. Рис.1. После развертывания этого цилиндра оказалось, что на вертикальных линиях, параллельных оси цилиндра, находятся химические элементы со сходными химическими свойствами. Так на одну вертикаль попадали Li, Na, K; а также Be, Mg, Ca. Кислород, сера, теллур. Недостатком спирали Шанкуртуа было то, что в вертикальную группу химических элементов попадали не имеющие ничего сходного с ними химические элементы. Так в группу щелочных металлов, попадал марганец. А в группу кислорода и серы, попадал титан.
3. Октавы Ньюлендса
В 1865 году 18 августа английский ученый Дж.А.Ньюлендс расположил химические элементы в порядке возрастания их атомных масс. В результате он заметил, что каждый восьмой элемент напоминает по свойствам первый элемент. Найденную закономерность, он назвал законом октав по аналогии с семью интервалами музыкальной гаммы.Рис.2.Закон октав он сформулировал следующим образом:
Рис. 2. Октавы Ньюлендса
«Номера аналогичных элементов, как правило, отличаются или на целое число семь или на кратное семи; другими словами члены одной и той же группы соотносятся друг с другом в том же отношении, как и крайние точки одной или больше октав в музыке».
Он расположил элементы по семь в группы. Таким образом, он заметил, что вертикальные ряды, полученные после такого расположения, включают в себя элементы, схожие по своим химическим свойствам. Дж.А. Ньюлендс был первым, кто соотнес атомные массы химических элементов и их химические свойства и присвоил каждому элементу порядковый номер. Но все же в его таблице не было свободных мест. Он ограничил себя семью клетками в каждом периоде ,и некоторые клетки ему пришлось поместить по несколько элементов. Поэтому научный мир отнесся скептически к его открытию.
В 1864 году английский химик У. Одлинг опубликовал таблицу, в которой элементы были размещены, согласно их атомным весам и сходствам химических свойств. Но он не дал никаких комментариев к своей работе, и она не была замечена.
4. Таблица химических элементов Мейера
Рис. 3. Таблица химических элементов Мейера
В 1870 году появилась первая таблица немецкого химика Ю.Л. Мейера под названием « Природа элемента, как функция их атомного веса». В неё были включены 28 элементов, размещенные в 6 столбцов, согласно их валентности. Ю.Л. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерные изменения атомной массы в рядах сходных элементов. Рис. 3.Сходные элементы располагаются в вертикальных рядах таблицы. Некоторые ячейки Ю.Л. Мейер оставил незаполненными.
5. Открытие периодического закона Д.И.Менделеевым
В марте 1869 года русский химик Д. И. Менделеев представил русскому химическому обществу сообщение об открытии им периодического закона химических элементов. В том же году вышло первое издание Менделеевского учебника «Основы химии», в котором была приведена его периодическая таблица.
В конце 1870 года Д. И. Менделеев делает доклад русскому химическому обществу под названием «Естественные системы химических элементов и применение её к указанию свойств еще неизвестных элементов». В этом докладе Д. И. Менделеев предсказывает существование трех еще неизвестных элементов: экасилиций, экабор и экаалюминий. Он утверждает, что свойства химических элементов, стоящих в одной группе, будут нечто средним между свойствами элементов, стоящих сверху и снизу данного элемента. Если рассматривать этот элемент в периоде, то он будет обладать средними свойствами элементов, стоящими слева и справа от него.
Рис. 4. Таблица химических элементов Менделеева
В 1871 году в итоговой статье « Периодическая закономерность химических элементов» Д. И. Менделеев дал следующую формулировку периодического закона:
«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса».
Тогда же Д. И. Менделеев придал своей таблице вид, ставшим классическим, так называемый короткий вариант. Рис.4.
Открытие новых химических элементов
В 1875 году П.Л. Буабодран открыл галлий. В 1879 году Л.Ф. Нильсон открыл скандий, а в 1886 году К.Винклер откывает германий. Это соответственно были экабор , экаалюминий, экасилиций, предсказанные Д. И. Менделеевым.
С этого момента периодический закон и периодическая система Д. И. Менделеева становится общепризнанной всем мировым химическим сообществом. Особая заслуга Д. И. Менделеева заключается в том, что он не только расположил химические элементы в определенной последовательности, но и дал описательную характеристику своей периодической системы. При помощи её можно было предсказывать химические свойства различных химических элементов.
По этому поводу Д. И. Менделеев писал: « Утверждение закона возможно только при помощи вывода из него следствий, без него невозможных и неожидаемых, и оправдание тех следствий в опытной проверке. Потому-то, увидев периодический закон, я со своей стороны вывел из него такие логические следствия, которые могли показать — верен ли он или нет. Без такого способа испытания не может утвердиться ни один закон природы».
Д. И. Менделеев взял на себя смелость оставить пустые клетки в своей таблице и исправить некоторые значения атомных масс химических элементов, предсказать свойства еще неоткрытых целых групп соединений. Таким образом, Д. И. Менделеев является первооткрывателем одного из главных законов природы.
Подведение итога урока
На уроке по теме «Попытки классификации химических элементов. Открытие периодического закона» вы познакомились с подробной исторической справкой о попытках классификации химических элементов учеными-химиками. Узнали о структуре периодического закона химических элементов Д.И. Менделеева, и огромном значении этого закона для химической науки.
Список рекомендованной литературы
1. Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман.М.: Просвещение. 2011 г.176с.:ил.
2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.
3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с .
Рекомендованные ссылки на ресурсы интернет
1. Chemport.ru (Источник).
2. Химик (Источник).
3. Hemi.nsu.ru (Источник).
Рекомендованное домашнее задание
1. №№ 1,2 (с.122) Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман.М.: Просвещение. 2011 г.176с.:ил.
2. Почему Д.И.Менделеев назвал свой закон периодическим?
3. Сформулируйте Периодический закон. Какие трудности встречались на пути к открытию этого закона?