Произведением вектора на число какие свойства

Произведением вектора на число какие свойства thumbnail

Откладывание вектора от данной точки

Для того чтобы ввести понятие умножения вектора на число, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $overrightarrow{a}$, то говорят, что вектор $overrightarrow{a}$ отложен от точки $A$ (рис. 1).

$overrightarrow{a}$ отложенный от точки $A$

Рисунок 1. $overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

  1. Вектор $overrightarrow{a}$ — нулевой.

    В этом случае, очевидно, что искомый вектор — вектор $overrightarrow{KK}$.

  2. Вектор $overrightarrow{a}$ — ненулевой.

    Обозначим точкой $A$ начало вектора $overrightarrow{a}$, а точкой $B$ — конец вектора $overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $overrightarrow{a}$. Отложим на этой прямой отрезки $left|KLright|=|AB|$ и $left|KMright|=|AB|$. Рассмотрим векторы $overrightarrow{KL}$ и $overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $overrightarrow{a}$ (рис. 2)

    Иллюстрация теоремы 1

    Рисунок 2. Иллюстрация теоремы 1

    Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

    Теорема доказана.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Умножение вектора на число

Пусть нам дан вектор $overrightarrow{a }$ и действительное число $k$.

Определение 2

Произведением вектора $overrightarrow{a }$ на действительное число $k$ называется вектор $overrightarrow{b }$ удовлетворяющий следующим условиям:

  1. Длина вектора $overrightarrow{b }$ равна $left|overrightarrow{b }right|=left|kright||overrightarrow{a }|$;

  2. Векторы $overrightarrow{a }$ и $overrightarrow{b }$ сонаправлены, при $kge 0$ и противоположно направлены, если $k

Обозначение: $ overrightarrow{b }=koverrightarrow{a }$.

Замечание 1

Отметим, что в результате произведения вектора на число всегда получается векторная величина.

Свойства произведения вектора на число

  1. Произведение любого вектора с числом ноль равняется нулевому вектору.

    Доказательство.

    По определению 2, имеем $left|overrightarrow{b }right|=left|kright|left|overrightarrow{a }right|=0cdot left|overrightarrow{a }right|=0$, следовательно,$overrightarrow{b }=koverrightarrow{a }=overrightarrow{0}$

  2. Для любого вектора $overrightarrow{a }$ и любого действительного числа $k$ векторы $overrightarrow{a }$ и $koverrightarrow{a }$ коллинеарны.

    Доказательство.

    Так как по определению 2, векторы $overrightarrow{a }$ и $koverrightarrow{a }$ сонаправлены или противоположно направлены (в зависимости от значения $k$), то они будут коллинеарны.

  3. Для любых действительных чисел $m$ и $n$ и вектора $overrightarrow{a }$ справедлив сочетательный закон:

    [left(mnright)overrightarrow{a }=m(noverrightarrow{a })]

    Доказательство этого закона иллюстрирует рисунок 3.

    Сочетательный закон

    Рисунок 3. Сочетательный закон

  4. Для любых действительных чисел $m$ и $n$ и вектора $overrightarrow{a }$ справедлив первый распределительный закон:

    [left(m+nright)overrightarrow{a }=moverrightarrow{a }+noverrightarrow{a }]

    Доказательство этого закона иллюстрирует рисунок 4.

    Первый распределительный закон

    Рисунок 4. Первый распределительный закон

  5. Для любого действительного числа $m$ и векторов $overrightarrow{a }$ и $overrightarrow{b }$ справедлив второй распределительный закон:

    [mleft(overrightarrow{a }+overrightarrow{b}right)=moverrightarrow{a }+moverrightarrow{b }]

    Доказательство этого закона иллюстрирует рисунок 5.

    Второй распределительный закон

    Рисунок 5. Второй распределительный закон

Пример задачи на использование понятия произведения вектора на число

Пример 1

Пусть $overrightarrow{x}=overrightarrow{a }+overrightarrow{b}$, $overrightarrow{y}=overrightarrow{a }-overrightarrow{b}$. Найти векторы:

  1. $2overrightarrow{x}+2overrightarrow{y}$

  2. $overrightarrow{x}+frac{1}{2}overrightarrow{y}$

  3. $-overrightarrow{y}-overrightarrow{x}$

Решение.

  1. $2overrightarrow{x}+2overrightarrow{y}=2left(overrightarrow{a }+overrightarrow{b}right)+2left(overrightarrow{a }-overrightarrow{b}right)=2overrightarrow{a }+2overrightarrow{b}+2overrightarrow{a }-2overrightarrow{b}=4overrightarrow{a }$

  2. $overrightarrow{x}+frac{1}{2}overrightarrow{y}=overrightarrow{a }+overrightarrow{b}+frac{1}{2}left(overrightarrow{a }-overrightarrow{b}right)=overrightarrow{a }+overrightarrow{b}+frac{1}{2}overrightarrow{a }-frac{1}{2}overrightarrow{b}=frac{3}{2}overrightarrow{a }+frac{1}{2}overrightarrow{b}=frac{3overrightarrow{a }+overrightarrow{b}}{2}$

  3. $-overrightarrow{y}-overrightarrow{x}=-left(overrightarrow{a }-overrightarrow{b}right)-left(overrightarrow{a }+overrightarrow{b}right)=-overrightarrow{a }+overrightarrow{b}-overrightarrow{a }-overrightarrow{b}=-2overrightarrow{a }$

Источник

На данном уроке мы рассмотрим новую операцию над векторами – умножение вектора на число. Кроме того, мы сформулируем законы умножения и научимся применять знания о векторах к решению различных задач.

Правило умножения вектора на число

На предыдущих уроках мы рассмотрели понятие вектора, ввели определения коллинеарных, сонаправленных, противонаправленных и равных векторов. Научились складывать и вычитать векторы, ввели законы сложения. Теперь нам нужно научиться умножать вектор на число. Особенность данной операции состоит в том, что число – это просто численная величина, не имеющая направления, а вектор – это направленный отрезок, имеющий численное измерение и направление.

Рассмотрим такую ситуацию: по дороге едут два автомобиля, скорость одного – 30 км/ч, а второго – 60 км/ч. Очевидно, что скорость второго автомобиля в два раза больше скорости первого, и скорость второго можно выразить через скорость первого, умножив скорость первого на два.

Определение

Произведение ненулевого вектора  на число k – такой вектор , длина которого равна , причем векторы  и  сонаправлены при  и противонаправлены при . Произведение нулевого вектора на любое число – это нулевой вектор.

Читайте также:  Какие свойства характерны для всех живых организмов

Пусть задан вектор  (см. Рис. 1). Вектор  – это вектор, направленный в ту же сторону, но длина его в два раза больше.

Вектор  имеет длину, в два раза большую, чем вектор  и ему противонаправлен.

Рис. 1

Законы умножения

Законы, которым подчиняется операция умножения вектора на число:

 – сочетательный закон;

 – первый распределительный закон;

 – второй распределительный закон.

Решение задач

Анализ данных законов показывает, что действия с векторами аналогичны действиям с алгебраическими выражениями.

Пример 1 – упростить выражение:

Раскроем скобки:

Приведем подобные:

Пример 2: Дан отрезок АВ (см. Рис. 2). Точка С – середина отрезка, точка О – произвольная точка плоскости. , . Доказать, что вектор .

Решение:

1 способ: применим правило треугольника и выразим вектор  как сумму двух векторов:

С другой стороны:  

Получили систему двух уравнений:

Рис. 2

Сложим уравнения системы:

, так как С – середина АВ, значит, модули данных векторов равны, но они противонаправлены, значит, их сумма – это нулевой вектор.

Получаем:

Поделим обе части на два:

Что и требовалось доказать.

2 способ:

Раскроем скобки и приведем подобные:

Пример 3: Доказать, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Мы знаем, что средняя линия трапеции соединяет середины ее боковых сторон, кроме того, мы знаем, что основания трапеции параллельны.

Воспользуемся правилом многоугольника и выразим вектор  как сумму векторов:

Рис. 3

С другой стороны,

Получаем систему уравнений:

Выполним сложение уравнений системы, получаем:

Векторы  противоположны и дают в сумме нулевой вектор, так как М – середина АВ, то есть модули данных векторов равны, кроме того, очевидно, что они противонаправлены. Аналогично векторы  дают в сумме нулевой вектор. Таким образом, получаем:

Поделим обе части на два:

Таким образом, мы доказали, что средняя линия равна полусумме оснований. Кроме того, равенство вектора  сумме  говорит о том, что прямая MN параллельна основаниям трапеции.

Итак, в данном уроке мы изучили операцию умножения вектора на число и сформулировали законы умножения. Кроме того, мы научились применять факты о векторах к решению различных задач.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Terver.ru (Источник).
  2. Cleverstudents.ru (Источник).
  3. Khd2.narod.ru (Источник).

Домашнее задание

  1. Задание 1: для произвольного четырехугольника MNPQ докажите, что: ; .
  2. Задание 2: сторона равностороннего треугольника  равна а. Найдите: ; ;;;.
  3. Задание 3: точки M и N – середины сторон АВ и ВС треугольника . Выразите векторы , , ,  через векторы , .

Источник

Определение векторного произведения

Перед тем, как дать понятие векторного произведения, обратимся к вопросу о ориентации упорядоченной тройки векторов a→, b→, c→ в трехмерном пространстве.

Отложим для начала векторы a→, b→, c→ от одной точки. Ориентация тройки a→, b→, c→ бывает правой или левой, в зависимости от направления самого вектора c→. От того, в какую сторону осуществляется кратчайший поворот от вектора a→ к b→ с конца вектора c→, будет определен вид тройкиa→, b→, c→.

Если кратчайший поворот осуществляется против часовой стрелки, то тройка векторов a→, b→, c→ называется правой, если по часовой стрелке – левой.

Определение векторного произведения

Далее возьмем два не коллинеарных вектора a→ и b→. Отложим затем от точки A векторы AB→=a→ и AC→=b→. Построим вектор AD→=c→, который одновременно перпендикулярный одновременно и AB→ и AC→. Таким образом, при построении самого вектора AD→=c→ мы можем поступить двояко, задав ему либо одно направление, либо противоположное (смотрите иллюстрацию).

Определение векторного произведения

Упорядоченная тройка векторов a→, b→, c→ может быть, как мы выяснили правой или левой в зависимости от направления вектора.

Из вышесказанного можем ввести определение векторного произведения. Данное определение дается для двух векторов, определенных в прямоугольной системе координат трехмерного пространства.

Определение 1

Векторным произведением двух векторов a→ и b→ будем называть такой вектор заданный в прямоугольной системе координат трехмерного пространства такой, что:

  • если векторы a→ и b→ коллинеарны, он будет нулевым;
  • он будет перпендикулярен и вектору a→​​​​ и вектору b→ т.е. ∠a→c→=∠b→c→=π2 ;
  • его длина определяется по формуле: c→=a→·b→·sin∠a→,b→;
  • тройка векторов a→, b→, c→ имеет такую же ориентацию, что и заданная система координат.
Читайте также:  При какой температуре теряет свойство кислота

Векторное произведение векторов a→ и b→ имеет следущее обозначение: a→×b→.

Координаты векторного произведения

Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.

Определение 2

В прямоугольной системе координат трехмерного пространства векторным произведением двух векторов a→=(ax; ay; az) и b→=(bx; by; bz) называют вектор c→=a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→, где i→, j→, k→ являются координатными векторами.

Векторное произведение можно представит как определитель квадратной матрицы третьего порядка, где первая строка есть векторы орты i→, j→, k→, вторая строка содержит координаты вектора a→, а третья – координаты вектора b→ в заданной прямоугольной системе координат, данный определитель матрицы выглядит так: c→=a→×b→=i→j→k→axayazbxbybz

Разложив данный определитель по элементам первой строки, получим равенство: c→=a→×b→=i→j→k→axayazbxbybz=ayazbybz·i→-axazbxbz·j→+axaybxby·k→==a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→

Свойства векторного произведения

Известно, что векторное произведение в координатах представляется как определитель матрицы c→=a→×b→=i→j→k→axayazbxbybz, то на базе свойств определителя матрицы выводятся следующие свойства векторного произведения:

  1. антикоммутативность a→×b→=-b→×a→;
  2. дистрибутивность a(1)→+a(2)→×b=a(1)→×b→+a(2)→×b→ или a→×b(1)→+b(2)→=a→×b(1)→+a→×b(2)→;
  3. ассоциативность λ·a→×b→=λ·a→×b→ или a→×(λ·b→)=λ·a→×b→, где λ — произвольное действительное число.

Данные свойства имеют не сложные доказательства.

Для примера можем доказать свойство антикоммутативности векторного произведения.

Доказательство антикоммутативности

По определению a→×b→=i→j→k→axayazbxbybz и b→×a→=i→j→k→bxbybzaxayaz. А если две строчки матрицы переставить местами, то значение определителя матрицы должно меняется на противоположное,следовательно,a→×b→=i→j→k→axayazbxbybz =-i→j→k→bxbybzaxayaz=-b→×a→, что и доказывает антикоммутативность векторного произведения.

Векторное произведение – примеры и решения

В большинстве случаев встречаются три типа задач.

В задачах первого типа обычно заданы длины двух векторов и угол между ними, а нужно найти длину векторного произведения. В этом случае пользуются следующей формулойc→=a→·b→·sin∠a→,b→ .

Пример 1

Найдите длину векторного произведения векторов a→ и b→, если известноa→=3, b→=5, ∠a→,b→=π4.

Решение

С помощью определения длины векторного произведения векторов a→ и b→ решим данную задач: a→×b→=a→·b→·sin∠a→,b→=3·5·sinπ4=1522.

Ответ: 1522.

Задачи второго типа имеют связь с координатами векторов, в них векторное произведение, его длина и т.д. ищутся через известные координаты заданных векторов a→=(ax; ay; az) и b→=(bx; by; bz).

Для такого типа задач, можно решить массу вариантов заданий. Например, могут быть заданы не координаты векторов  a→ и b→, а их разложения по координатным векторам вида b→=bx·i→ +by·j→+bz·k→ и c→=a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→, или векторы a→ и b→ могут быть заданы координатами точек их начала и конца.

Рассмотрим следующие примеры.

Пример 2

В прямоугольной системе координат заданы два вектора a→=(2; 1; -3), b→=(0; -1; 1). Найдите их векторное произведение.

Решение

По второму определению найдем векторное произведение двух векторов в заданных координатах:a→×b→=(ay·bz-az·by)·i→+(az·bx-ax·bz)·j→+(ax·by-ay·bx)·k→==(1·1-(-3)·(-1))·i→+((-3)·0-2·1)·j→+(2·(-1)-1·0)·k→==-2i→-2j→-2k→.

Если записать векторное произведение через определитель матрицы, то решение данного примера выглядит следующим образом: a→×b→=i→j→k→axayazbxbybz=i→j→k→21-30-11=-2i→-2j→-2k→.

Ответ: a→×b→=-2i→-2j→-2k→.

Пример 3

Найдите длину векторного произведения векторов i→-j→ и i→+j→+k→, где i→, j→, k→ — орты прямоугольной декартовой системы координат.

Решение

Для начала найдем координаты заданного векторного произведения i→-j→×i→+j→+k→ в данной прямоугольной системе координат.

Известно, что векторы i→-j→ и i→+j→+k→ имеют координаты (1; -1; 0)  и (1; 1; 1) соответственно. Найдем длину векторного произведения при помощи определителя матрицы, тогда имеем i→-j→×i→+j→+k→=i→j→k→1-10111=-i→-j→+2k→.

Следовательно, векторное произведение i→-j→×i→+j→+k→ имеет координаты (-1; -1; 2) в заданной системе координат.

Длину векторного произведения найдем по формуле (см. в разделе нахождение длины вектора): i→-j→×i→+j→+k→=-12+-12+22=6.

Ответ: i→-j→×i→+j→+k→=6..

Пример 4

В прямоугольной декартовой системе координат заданы координаты трех точек A(1,0,1), B(0,2,3), C(1,4,2) . Найдите какой-нибудь вектор, перпендикулярный AB→ и AC→ одновременно.

Решение

Векторы  AB→ и AC→ имеют следующие координаты (-1; 2; 2) и (0; 4; 1) соответственно. Найдя векторное произведение векторов AB→ и AC→, очевидно, что оно является перпендикулярным вектором по определению и к  AB→​​​​​ и к AC→, то есть, является решением нашей задачи. Найдем его AB→×AC→=i→j→k→-122041=-6i→+j→-4k→.

Ответ: -6i→+j→-4k→. — один из перпендикулярных векторов.

Задачи третьего типа ориентированы на использование свойств векторного произведения векторов. После применения которых, будем получать решение заданной задачи.

Пример 5

Векторы  a→ и b→ перпендикулярны и их длины равны соответственно 3 и 4. Найдите длину векторного произведения 3·a→-b→×a→-2·b→=3·a→×a→-2·b→+-b→×a→-2·b→==3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→.

Решение

По свойству дистрибутивности векторного произведения мы можем записать 3·a→-b→×a→-2·b→=3·a→×a→-2·b→+-b→×a→-2·b→==3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→

По свойству ассоциативности вынесем числовые коэффициенты за знак векторных произведений в последнем выражении: 3·a→×a→+3·a→×-2·b→+-b→×a→+-b→×-2·b→==3·a→×a→+3·(-2)·a→×b→+(-1)·b→×a→+(-1)·(-2)·b→×b→==3·a→×a→-6·a→×b→-b→×a→+2·b→×b→

Векторные произведения a→×a→ и b→×b→ равны 0, так как a→×a→=a→·a→·sin0=0 и b→×b→=b→·b→·sin0=0, тогда 3·a→×a→-6·a→×b→-b→×a→+2·b→×b→=-6·a→×b→-b→×a→..

Из антикоммутативности векторного произведения следует -6·a→×b→-b→×a→=-6·a→×b→-(-1)·a→×b→=-5·a→×b→..

Воспользовавшись свойствами векторного произведения, получаем равенство 3·a→-b→×a→-2·b→==-5·a→×b→.

По условию векторы  a→ и b→ перпендикулярны, то есть угол между ними равен π2. Теперь остается лишь подставить найденные значения в соответствующие формулы: 3·a→-b→×a→-2·b→=-5·a→×b→==5·a→×b→=5·a→·b→·sin(a→,b→)=5·3·4·sinπ2=60.

Читайте также:  Что такое свет какими свойствами обладает свет

Ответ: 3·a→-b→×a→-2·b→=60.

Геометрический смысл векторного произведения

Длина векторного произведения векторов по орпеделению равна a→×b→=a→·b→·sin∠a→,b→. Так как уже известно (из школьного курса), что площадь треугольника равна половине произведения длин двух его сторон умноженное на синус угла между данными сторонами. Следовательно, длина векторного произведения равна площади параллелограмма — удвоенного треугольника, а именно произведению сторон в виде векторов  a→ и b→, отложенные от одной точки, на синус угла между ними sin∠a→,b→.

Это и есть геометрический смысл векторного произведения.

Геометрический смысл векторного произведения

Физический смысл векторного произведения

В механике, одном из разделов физики, благодаря векторному произведению можно определить момент силы относительно точки пространства.

Определение 3

Под моментом силы F→, приложенной к точке B, относительно точки A будем понимать следующее векторное произведение AB→×F→.

Источник

В данной теме мы подытожим раздел векторы, опишем все действия, которые
можно совершать над векторами и какими свойствами они обладают.

Действия над векторами

Определение

Вектором называется направленный отрезок $overline{A B}$ ,
где точка $A$ — начало, точка
$B$ — конец вектора.

Суммой $overline{a}+overline{b}$ векторов
$overline{a}$ и
$overline{b}$ называют такой третий вектор
$overline{c}$, начало которого совпадает с началом
$overline{a}$, а конец — с концом
$overline{b}$ при условии, что конец вектора
$overline{a}$ и начало вектора
$overline{b}$ совпадают.

Свойства операции сложения:

1°    $overline{a}+overline{b}=overline{b}+overline{a}$ — коммутативность

2°    $(overline{a}+overline{b})+overline{c}=overline{a}+(overline{b}+overline{c})$ — ассоциативность

3°    $overline{a}+overline{0}=overline{a}$

4°    $overline{a}+(-overline{a})=overline{0}$

Определение

Разностью $overline{a}-overline{b}$ векторов
$overline{a}$ и
$overline{b}$ называется вектор $overline{c}$
такой, что выполняется условие: $overline{b}+overline{c}=overline{a}$.

Произведением $alpha overline{a}$ вектора
$overline{a}$ на число
$alpha$ называется вектор
$overline{b}$, удовлетворяющий условиям:

  1. $overline{b} | overline{a}$
  2. $|overline{b}|=|alpha||overline{a}|$
  3. $overline{a} uparrow uparrow overline{b}$, если
    $alpha>0$,
    $overline{a} uparrow downarrow overline{b}$, если
    $alpha

Свойства умножения вектора на число:

1°    $(alpha pm beta) overline{a}=alpha overline{a} pm beta overline{a}$

2°    $alpha(overline{a} pm overline{b})=alpha overline{a} pm alpha overline{b}$

3°    $alpha(beta overline{a})=(alpha beta) overline{a}=beta(alpha overline{a})$

4°    $1 cdot overline{a}=overline{a}$

5°    $-1 cdot overline{a}=-overline{a}$

6°    $0 cdot overline{a}=overline{0}$

Определение

Скалярным произведением двух ненулевых векторов $overline{a}$ и
$overline{b}$ называется число, равное произведению
длин этих векторов на косинус угла между ними:

Произведением вектора на число какие свойства

Свойства скалярного произведения:

1°    $(overline{a}, overline{b})=(overline{b}, overline{a})$ — симметричность.

2°    $(overline{a}, overline{a})=|overline{a}|^{2}$. Обозначается
$(overline{a}, overline{a})=overline{a}^{2}$ и называется скалярный квадрат.

3°    Если $overline{a} neq overline{0}$, то Произведением вектора на число какие свойства

4°    Если $overline{a} neq overline{0}$ и $overline{b} neq overline{0}$ и
$(overline{a}, overline{b})=0$, то $overline{a} perp overline{b}$. Верно и обратное утверждение.

5°    $(overline{a}+overline{b}, overline{c})=(overline{a}, overline{c})+(overline{b}, overline{c})$

6°    $(lambda overline{a}, overline{b})=lambda(overline{a}, overline{b})$

7°    $(alpha overline{a}+beta overline{b}, gamma overline{c}+delta overline{d})=alpha gamma(overline{a}, overline{c})+alpha delta(overline{a}, overline{d})+beta gamma(overline{b}, overline{c})+beta delta(overline{b}, overline{d})$

Определение

Векторным произведением ненулевых векторов $overline{a}$ и
$overline{b}$ называется вектор $overline{c}$,
обозначаемый символом $[overline{a}, overline{b}]$ или
$overline{a} times overline{b}$, длина которого
Произведением вектора на число какие свойства.

Свойства векторного произведения:

1°    $[overline{a}, overline{b}]=overline{0}$, тогда и только тогда, когда
$overline{a} | overline{b}$

2°    $[overline{a}, overline{b}]=-[overline{b}, overline{a}]$

3°    Модуль векторного произведения $|[overline{a}, overline{b}]|$
равен площади параллелограмма, построенного на заданных векторах $overline{a}$ и
$overline{b}$ (рис. 2), т.е.

Произведением вектора на число какие свойства

4°    $[lambda overline{a}, overline{b}]=[overline{a}, lambda overline{b}]=lambda[overline{a}, overline{b}]$

5°    $left[overline{a}_{1}+overline{a}_{2}, overline{b}right]=left[overline{a}_{1}, overline{b}right]+left[overline{a}_{2}, overline{b}right] ;left[overline{a}, overline{b}_{1}+overline{b}_{2}right]=left[overline{a}, overline{b}_{1}right]+left[overline{a}, overline{b}_{2}right]$

Определение

Смешанным произведением трех векторов $overline{a}$,
$overline{b}$, $overline{c}$
называется число, равное скалярному произведению вектора $overline{a} times overline{b}$
на вектор $overline{c}$: $(overline{a}, overline{b}, overline{c})=([overline{a}, overline{b}], overline{c})$

Свойства смешанного произведения:

1°    $(overline{a}, overline{b}, overline{c})=(overline{a},[overline{b}, overline{c}])$

2°    $(overline{a}, overline{b}, overline{c})=(overline{b}, overline{c}, overline{a})=(overline{c}, overline{a}, overline{b})=-(overline{b}, overline{a}, overline{c})=-(overline{c}, overline{b}, overline{a})=-(overline{a}, overline{c}, overline{b})$

3°    Три вектора компланарны тогда и только тогда, когда $(overline{a}, overline{b}, overline{c})=0$

4°    Тройка векторов является правой тогда и только тогда, когда $(overline{a}, overline{b}, overline{c})>0$.
Если же $(overline{a}, overline{b}, overline{c})

5°    $(lambda overline{a}, overline{b}, overline{c})=(overline{a}, lambda overline{b}, overline{c})=(overline{a}, overline{b}, lambda overline{c})=lambda(overline{a}, overline{b}, overline{c})$

6°    $left(overline{a}_{1}+overline{a}_{2}, overline{b}, overline{c}right)=left(overline{a}_{1}, overline{b}, overline{c}right)+left(overline{a}_{2}, overline{b}, overline{c}right)$

7°    $left(overline{a}, overline{b}_{1}+overline{b}_{2}, overline{c}right)=left(overline{a}, overline{b}_{1}, overline{c}right)+left(overline{a}, overline{b}_{2}, overline{c}right)$

8°    $left(overline{a}, overline{b}, overline{c}_{1}+overline{c}_{2}right)=left(overline{a}, overline{b}, overline{c}_{1}right)+left(overline{a}, overline{b}, overline{c}_{2}right)$

9°    $([overline{a}, overline{b}], overline{c})=overline{b}(overline{a}, overline{c})-overline{a}(overline{b}, overline{c}) ;(overline{a},[overline{b}, overline{c}])=overline{b}(overline{a}, overline{c})-overline{c}(overline{a}, overline{b})$

10°    Тождество Якоби: $(overline{a},[overline{b}, overline{c}])+(overline{b},[overline{c}, overline{a}])+(overline{c},[overline{a}, overline{b}])=0$

Читать дальше: примеры решения задач с векторами.

Вы поняли, как решать? Нет?

Источник