При какой температуре теряет свои свойства магнит
Данную статью мы написали, чтобы дать ответ на вопрос о классах магнитов, их стандартах, физических характеристиках.
Несмотря на то, что предлагаемые нами магниты называются неодимовыми, они могут очень сильно отличаться друг от друга, ведь у каждого магнита есть свои физические характеристики, а не только размеры, форма и покрытие. Поэтому вопрос, какие именно неодимовые магниты Вас интересуют, не должен ставить Вас в тупик. В этой статье Вы получите ответы на многие свои вопросы.
Что обозначают буквы и цифры в классах неодимовых магнитов?
Зачастую, мы, как производители и продавцы, хотим услышать технические характеристики магнита, а именно буквы и цифры, в которых они (технические характеристики) зашифрованы. А покупатель зачастую досконально знает свою область применения магнитов, но номенклатуру, тем более международную, не знает.
Итак, начинаем разбираться с международной номенклатурой магнитов, а именно классами, техническими характеристиками и обозначениями.
В первую очередь, неодимовые магниты делят на классы, которые обозначаются буквами и числами (например, N35), в которых и заложена основная информация о магните. Ниже приведена стандартная номенклатурная таблица характеристик неодимовых магнитов (смотрите в левый столбик – там указаны классы).
В таблице все численные величины мы представили в двух единицах измерения. Первая, без скобочек, – это величина измерения в системе СИ (эта та система, в которой работает наша страна), а вторая (указана в скобках), – это измерения в международной системе СГСЕ (европейские стандарты). Для Вашего удобства мы решили указать в таблице обе единицы измерения.
Таблица характеристик неодимовых магнитов
Начинаем изучать таблицу справа налево. Как Вы можете увидеть по правому столбику таблицы, основное классовое отличие магнитов – это их рабочая температура использования, то есть та допустимая максимальная температура, превышая которую магнит начинает терять свои магнитные свойства. Таким образом, на температурный диапазон использования магнита указывает буквенная часть его маркировки (левый столбец). Дадим расшифровку этих букв:
- Магниты марки N (Normal)– могут применяться при нормальных температурах, то есть до 80 градусов Цельсия;
- Магниты марки M (Medium) – могут применяться при повышенных температурах, то есть до 100 градусов Цельсия;
- Магниты марки H (High) – могут применяться при высоких температурах, до 120 градусов Цельсия;
- Магниты марки SH (Super High) – могут применяться при температурах до 150 градусов Цельсия;
- Магниты марки UH (Ultra High) – могут применяться при температурах до 180 градусов Цельсия;
- Магниты марки EH (Extra High) – могут применяться при температурах до 200 градусов Цельсия.
Стоит оговориться, что отрицательные температуры не оказывают влияния на магнитные свойства для большинства магнитов.
Цифры, указанные в обозначении класса магнитов: N30, 33M, 35H, 38SH, 40UH и т.д., указывают на Магнитную Энергию (четвертый столбец таблицы), измеряется в килоДжоуль на кубический метр. Этот критерий магнитов отвечает за их мощность или, так называемое, «усилие на отрыв», то есть сила, которую необходимо приложить к магниту, чтобы его «оторвать» от поверхности. Необходимо понимать, что поверхность (стальной лист) должен быть идеально ровным, а приложенная сила должна быть перпендикулярной к листу. Это, так называемые, идеальные или теоритические условия. Совершенно понятно, что чем выше цифровое обозначение магнита, тем выше его усилие на отрыв.
Сила на отрыв магнита
Но, кроме того, «сила на отрыв» зависит не только от физических характеристик магнита, но и от его размера и веса. Например, магнит 25*20 мм легче оторвать от стального листа, чем магнит 40*5 мм, так как площадь соприкосновения у второго магнита больше (25 мм против 40мм). Но линии магнитного поля, если их визуализировать, распространяются у первого магнита (25*20 мм) «дальше», значит, и «цепляется» за стальной лист он лучше.
Класс | Остаточная магнитная индукция, миллиТесла (КилоГаусс) | Коэрцитивная сила, КилоАмпер/метр (КилоЭрстед) | Магнитная энергия, килоДжоуль/м3 (МегаГаусс-Эрстед) | Рабочая температура, градус Цельсия |
N35 | 1170-1220 (11,7-12,2) | ≥955 (≥12) | 263-287 (33-36) | 80 |
N38 | 1220-1250 (12,2-12,5) | ≥955 (≥12) | 287-310 (36-39) | 80 |
N40 | 1250-1280 (12,5-12,8) | ≥955 (≥12) | 302-326 (38-41) | 80 |
N42 | 1280-1320 (12,8-13,2) | ≥955 (≥12) | 318-342 (40-43) | 80 |
N45 | 1320-1380 (13,2-13,8) | ≥955 (≥12) | 342-366 (43-46) | 80 |
N48 | 1380-1420 (13,8-14,2) | ≥876 (≥12) | 366-390 (46-49) | 80 |
N50 | 1400-1450 (14,0-14,5) | ≥876 (≥11) | 382-406 (48-51) | 80 |
N52 | 1430-1480 (14,3-14,8) | ≥876 (≥11) | 398-422 (50-53) | 80 |
33M | 1130-1170 (11,3-11,7) | ≥1114 (≥14) | 247-263 (31-33) | 100 |
35M | 1170-1220 (11,7-12,2) | ≥1114 (≥14) | 263-287 (33-36) | 100 |
38M | 1220-1250 (12,2-12,5) | ≥1114 (≥14) | 287-310 (36-39) | 100 |
40M | 1250-1280 (12,5-12,8) | ≥1114 (≥14) | 302-326 (38-41) | 100 |
42M | 1280-1320 (12,8-13,2) | ≥1114 (≥14) | 318-342 (40-43) | 100 |
45M | 1320-1380 (13,2-13,8) | ≥1114 (≥14) | 342-366 (43-46) | 100 |
48M | 1380-1420 (13,8-14,3) | ≥1114 (≥14) | 366-390 (46-49) | 100 |
50M | 1400-1450 (14,0-14,5) | ≥1114 (≥14) | 382-406 (48-51) | 100 |
30H | 1080-1130 (10,8-11,3) | ≥1353 (≥17) | 223-247 (28-31) | 120 |
33H | 1130-1170 (11,3-11,7) | ≥1353 (≥17) | 247-271 (31-34) | 120 |
35H | 1170-1220 (11,7-12,2) | ≥1353 (≥17) | 263-287 (33-36) | 120 |
38H | 1220-1250 (12,2-12,5) | ≥1353 (≥17) | 287-310 (36-39) | 120 |
40H | 1250-1280 (12,5-12,8) | ≥1353 (≥17) | 302-326 (38-41) | 120 |
42H | 1280-1320 (12,8-13,2) | ≥1353 (≥17) | 318-342 (40-43) | 120 |
45H | 1320-1380 (13,2-13,8) | ≥1353 (≥17) | 326-358 (43-46) | 120 |
48H | 1380-1420 (13,8-14,3) | ≥1353 (≥17) | 366-390 (46-49) | 120 |
30SH | 1080-1130 (10,8-11,3) | ≥1592 (≥20) | 233-247 (28-31) | 150 |
33SH | 1130-1170 (11,3-11,7) | ≥1592 (≥20) | 247-271 (31-34) | 150 |
35SH | 1170-1220 (11,7-12,2) | ≥1592 (≥20) | 263-287 (33-36) | 150 |
38SH | 1220-1250 (12,2-12,5) | ≥1592 (≥20) | 287-310 (36-39) | 150 |
40SH | 1240-1280 (12,4-12,8) | ≥1592 (≥20) | 302-326 (38-41) | 150 |
42SH | 1280-1320 (12,8-13,2) | ≥1592 (≥20) | 318-342 (40-43) | 150 |
45SH | 1320-1380 (13,2-13,8) | ≥1592 (≥20) | 342-366 (43-46) | 150 |
28UH | 1020-1080 (10,2-10,8) | ≥1990 (≥25) | 207-231 (26-29) | 180 |
30UH | 1080-1130 (10,8-11,3) | ≥1990 (≥25) | 223-247 (28-31) | 180 |
33UH | 1130-1170 (11,3-11,7) | ≥1990 (≥25) | 247-271 (31-34) | 180 |
35UH | 1180-1220 (11,7-12,2) | ≥1990 (≥25) | 263-287 (33-36) | 180 |
38UH | 1220-1250 (12,2-12,5) | ≥1990 (≥25) | 287-310 (36-39) | 180 |
40UH | 1240-1280 (12,4-12,8) | ≥1990 (≥25) | 302-326 (38-41) | 180 |
28EH | 1040-1090 (10,4-10,9) | ≥2388 (≥30) | 207-231 (26-29) | 200 |
30EH | 1080-1130 (10,8-11,3) | ≥2388 (≥30) | 233-247 (28-31) | 200 |
33EH | 1130-1170 (11,3-11,7) | ≥2388 (≥30) | 247-271 (31-34) | 200 |
35EH | 1170-1220 (11,7-12,2) | ≥2388 (≥30) | 263-287 (33-36) | 200 |
38EH | 1220-1250 (12,2-12,5) | ≥2388 (≥30) | 287-310 (36-39) | 200 |
Как сравнить силу магнитов?
Если возникает необходимость сравнить, какой из двух выбранных магнитов сильнее, рекомендуем Вам воспользоваться следующими способами.
- При одинаковых линейных размерах (точная методика):
Чтобы понять, насколько один магнит сильнее другого, необходимо значение остаточной магнитной индукции одного магнита (второй столбец таблицы) разделить на значение остаточной магнитной индукции другого магнита. Пример: неодимовый магнит N40 с В=1250 мТ и неодимовый магнит N50 с В=1400 мТ, делим их магнитные индукции и получаем 1400/1250 = 1,12, то есть магнит N50 «сильнее» магнита N40 на 12%, при условии, что линейные размеры магнитов одинаковые.
- При разных линейных размерах (грубая методика):
Чтобы понять, насколько один магнит сильнее другого, необходимо сравнить их массы. Пример: магнит 30*10 мм весит примерно 55 грамм, а магнит 25*20 мм весит 76 грамм. Делим их массы 76/55=1,38, то есть магнит 25*20 мм сильнее магнита 30*10 мм примерно на 38%, при условии, что их классы, то есть физические характеристики, одинаковые.
Коэрцитивная сила магнита
И в таблице осталась одна незатронутая колонка – Коэрцитивная Сила (третий столбец). Кратко, Коэрцитивная сила – это величина магнитного поля, в которое нужно поместить магнит, чтобы его «размагнитить». Данная величина, как правило, очень важна в случаях, если магнит эксплуатируется в условиях жёсткого внешнего магнитного поля, как правило, вблизи мощных электроузлов.
Надеемся, что в данной статье (характеристики неодимовых магнитов) Вы нашли ответы на часть Ваших вопросов. На другие вопросы мы с удовольствием ответим по телефону или электронной почте, которые указаны в контактах.
Читайте также:
Что такое неодимовый магнит?
Что такое самариевый магнит?
Правила работы с магнитами
Что такое аксиальная намагниченность?
Можно ли изготовить магниты по Вашим размерам?
Количество просмотров:22429
Многие пользователи интересуются, размагничиваются ли неодимовые магниты. Как правило, такой вопрос возникает после какого-то случайного инцидента, приведшего к потере изделием своих свойств. Чтобы избежать повторения подобных ситуаций, важно знать о факторах, которые могут привести к размагничиванию материала. Кроме того, знание таких особенностей будет полезно энтузиастам или домашним умельцам, которым может потребоваться перемагнитить имеющиеся в распоряжении изделия или уменьшить их намагниченность.
Размагничиватели инструмента могут намагнитить или размагнитить отвертку, но не магнит.
Причины размагничивания неодимовых магнитов
Даже самые мощные магниты неизбежно размагничиваются со временем. При оптимальном режиме эксплуатации срок службы неодимовых магнитов может достигать нескольких сотен лет, а простые ферритовые изделия сохраняют свои свойства на протяжении десятилетий. Конкретные сроки зависят от характеристик сплава и ряда других показателей. Определенные воздействия могут привести к одномоментной потере магнитов своих качеств.
1) Нагрев. Стандартные классы сплава неодима-железа-бора нельзя использовать при температурах выше +80⁰C. Если неодимовый магнитный диск поместить в кипяток или разместить в непосредственной близости с сильно греющимся оборудованием, то уже через несколько минут изделие полностью лишится своего магнитного поля. Существует специальные модификации материала с повышенной устойчивостью к воздействиям высоких температур. Такие неодимовые магниты могут выдержать нагрев до +200⁰C. В промышленности для размагничивания материалов используют именно воздействие высоких температур.
2) Механические воздействия. Неодимовые магниты размагничиваются после сильных ударов. Порошковая структура материала может быть повреждена при падениях о твердую поверхность на высокой скорости или, к примеру, при ударе молотком.
3) Ошибки при резке или сверлении. Несмотря на то, что обработка неодимовых магнитов в домашних условиях не рекомендуется, пользователи могут столкнуться с необходимостью разделить имеющийся кусок на несколько меньших частей. Для этого используют болгарку с алмазным кругом. Чрезмерно сильное давление или отсутствие должного охлаждения магнита в процессе обработки неизбежно приводят к потере изделием своих характеристик. Сделать дома неодимовый магнит с отверстием при помощи сверла не получится.
4) Воздействие внешнего магнитного поля. Одной из важных сильных сторон неодимовых магнитов является стойкость к внешним магнитным полям. Чтобы материал лишился своих магнитных характеристик, необходимо магнитное поле с индукцией около 3-4 Тесла. Таким образом, в домашних условиях размагнитить сплав неодима, железа и бора путем воздействия внешнего поля просто невозможно.
Можно ли намагнитить магнит, который потерял свои свойства
Итак, из-за нарушения условий эксплуатации магнит больше не притягивает металлические предметы. Как в этом случае восстановить его характеристики? Другими словами, если размагнитился магнит, то как намагнитить его снова? От попыток восстановления неодимовых магнитов лучше сразу отказаться, поскольку технология производства этих изделий требует воздействия крайне мощного магнитного поля. Для этого требуются промышленные намагничивающие установки, которые не подходят для домашнего использования из-за своей дороговизны и высокого энергопотребления. При необходимости восстановления мощных магнитов можно обратиться на предприятие, в распоряжении которого есть подобное оборудование.
При соблюдении правил эксплуатации неодимовых магнитов об их размагничивании можно не переживать. С другой стороны, если вы хотите каким-то образом намагнитить изделие, лишившееся своих магнитных качеств, то эта идея является абсолютно бесперспективной. Гораздо проще, быстрее и эффективнее купить новый качественный неодимовый магнит в интернет-магазине «Мир Магнитов». В нашем каталоге представлены разнообразные варианты магнитных материалов, изделий и приборов. Чтобы получить квалифицированную помощь в подборе мощных магнитов звоните по телефону 8 (495) 662 49 15 или задайте свой вопрос в сообщении на email info@mirmagnitov.ru.
Лучшее за 30 дней
Все самое интересное из «магнитного мира» Вы сможете найти здесь, в блоге Мир Магнитов. Каждую неделю мы будем радовать Вас новыми постами
Заполняя форму, вы соглашаетесь с обработкой персональных данных и условиями сайта.
Подробнее
Александр Трофимов
Высший разум
(3310813)
1 год назад
Да, если Вы нагреваете магниты выше 80 градусов по Цельсию, магниты начинают теряют свои магнитные свойства. Поддерживая эту температуру длительное время или значительно увеличивая её, Вы можете полностью размагнитить магниты. Некоторые типы магнитов, например, магниты самарий-кобальт, имеют более высокое температурное сопротивление.
Nikassaiop End
Гуру
(2898)
1 год назад
В убывающем переменном магнитном поле частотой 50Гц магнит размагничивается за секунды.
При температуре Кюри магнит размагничивается сразу мгновенно.
В квартире время размагничивания зависит от химического состава магнита (а магниты бывают не только из железа) и от температуры. На горячей батарее магнит размагничивается быстрее, чем на холодном окне.
Но на самом деле на планете Земля ни один магнит до конца сам собой не размагничивается при температуре меньше температура Кюри. Дело в том, что у нашей планеты есть свое собственное магнитное поле, которое потихоньку намагничивает все размагниченные ферромагнетики, которые лежат неподвижно. Именно так сам собой намагничивается металлопрокат на складе или обычные рельсы.
Один в магнитном поле воинОракул (58338)
1 год назад
В убывающем электромагнитном поле или переменном магнитном поле магнит не размагнится ни за секунды ни за день, если амплитуда тока этого поля не будет превышать амплитуду тока при намагничивании магнита. Тогда возможно.
При высокой температуре магнит размагничивается и не мгновенно а в течении времени. После приведения состояния магнита к условиям намагничивания магнит возвращается свои магнитные свойства на 30-40%.
При низкой температуре магнит усиливает свои магнитные свойства вплоть до проявления сверхпроводимости.
Иван Олефиренко олефиренко
Мудрец
(16748)
1 год назад
Может и теряет.
Как ты знаешь магнитизм это действие электрического тока.
—
Когда электрон летает вокруг ядра он создаёт магнитное поле, но все эти магнитные поля повёрнуты в разных направлениях поэтому у многих тел нет магнитных свойств.
—
У магнита все эти направления повёрнуты в одну сторону поэтому магнитные поля складываются и создают большое поле всего тела.
—
Если поместить магнит в переменное магнитное поле, он размагнитится.
Один в магнитном поле воинОракул (58338)
1 год назад
В убывающем электромагнитном поле или переменном магнитном поле магнит не размагнится ни за секунды ни за день, если амплитуда тока этого поля не будет превышать амплитуду тока при намагничивании магнита. Тогда возможно.
При высокой температуре магнит размагничивается и не мгновенно а в течении времени. После приведения состояния магнита к условиям намагничивания магнит возвращает свои магнитные свойства на 30-40%.
При низкой температуре магнит усиливает свои магнитные свойства вплоть до проявления сверхпроводимости.
Один в магнитном поле воин
Оракул
(58338)
1 год назад
Наблюдали такие эксперименты.
Важно понимать что магнитное поле не создается, а существует всегда… Создается электрический потенциал, который меняет форму и геометрию магнитного поля… это могут называть например «переменное магнитное поле»… или электромагнитное поле..
Можно размагнитить магнит способом обратным его намагничиванию или перемагнитить его.
Брали магнит и нагревали его при это визуализируя структуру его магнитного поля.
При температуре окружающей среды структура магнитного поля относительно неподвижные сотовые структуры. По мере нагревания структуры начинают приходить в движение, а сам магнит теряет свои магнитные свойства. Чем больше нагревание тем быстрее вращение и движение структуры и тем больше магнит теряет свои свойства быть магнитом. Т. е. магнетизм высвобождается вращением и движением структуры, равно как и преобразуется им. При охлаждении происходит обратный процесс вплоть до появления явления сверхпроводимости. Когда магнит потеряет свои свойства быть магнитом он станет куском железа, который также будет иметь вокруг себя «поле» но его уже будут классифицировать как гравитационное поле земли, т. е. форма магнитного поля Земли.
Уничтожить же магнитное поле вокруг предмета невозможно, так как всякое внешнее поле подобно матрешкам. Магнитное поле магнита результат искажения магнитного поля земли, магнитное поле земли результат искажения магнитного поля солнечной системы и так далее галактики вселенная.
Ответы выше не совсем правильные
В убывающем электромагнитном поле или переменном магнитном поле магнит не размагнится ни за секунды ни за день, если амплитуда тока этого поля не будет превышать амплитуду тока при намагничивании магнита. Тогда возможно.
При высокой температуре магнит размагничивается и не мгновенно, а в течении, зависящем от температуры времени. После приведения состояния магнита к условиям среды намагничивания магнит возвращает свои магнитные свойства на 30-40%.
При низкой температуре магнит усиливает свои магнитные свойства вплоть до проявления сверхпроводимости.
Как делают магниты ?
Берут заготовку помещают ее в катушку и на катушку дают разряд тока от конденсаторов… структура заготовки «запоминает» т. е. намагничивание результат импульсного разряда т. е. тока одного направления. Если создать разряд током обратного направления магнит размагнитится.
можешь почитать про магнетизм тут https://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.pl?num=1481985197
Мёдоед
Мастер
(1594)
1 год назад
Проверь, положи банковскую карточку на мощный магнит )
Peer-2-PeerМыслитель (5966)
1 год назад
Мёдоед, ненаучно!!! Есть разница между размагничиванием и перемагничиванием.
Да и тождественны ли РАЗМАГНИЧИВАНИЕ и ПОТЕРЯ МАГНИТНЫХ СВОЙСТВ ?!?
P.S. Поль Дирак Вам знаком ???
Хозяйка тихого омута!
Искусственный Интеллект
(5972751)
1 год назад
Если Вы имеете в виду намагниченность (дальний порядок магнитных моментов в структуре), то да. Причем не при плавлении, а при более низкой температуре называемой температурой Кюри. При этой температуре спонтанная намагниченность разрушается и ферро (ферри) магнетики становятся парамагнетиками. Для большинства магнитных материалов температура Кюри намного ниже температуры плавления (исключение — кобальт и некоторые его сплавы, у них достаточно близки Тк и Тпл, но все равно точка Кюри, конечно, всегда ниже Тпл).