При какой температуре металл теряет магнитные свойства
Еще со времен
Гильберта было известно, что железо и
сталь теряют свои магнитные свойства,
будучи нагреты до светло-красного
каления. Они при этом перестают
намагничиваться и не притягиваются
магнитом, но при охлаждении восстанавливают
свои обычные качества. То же происходит
при несколько более высокой температуре
с кобальтом и при более низкой — с
никкелем. Вообще говоря, переход от
магнитного состояния к немагнитному
происходит очень быстро, как только
температура тела достигает определенного
предела.
152
В
виде примера приведем данные, которые
былиполучены:
Гопкинсоном во время одного опыта с
куском кованого железа. Когда этот
материал был подвергнут действию слабого
магнитного поля (H=0,3
эрстеда), его магнитная проницаемость
непрерывно возрастала с повышением
температуры сначала медленно, затем
все быстрее и быстрее и так далее, до
предельной температуры, которая в
описываемом случае оказалась равной
775° С. При этой температуре магнитная
проницаемость во много раз больше, чем
в случае холодного железа. При дальнейшем
нагревании последовала чрезвычайно
быстрая потеря магнитных свойств: когда
температура поднялась всего только на
11°, т. е. до 786°С, железо сделалось
практически немагнитным. Его магнитная
проницаемость стала равной 1,1, между
тем как при 775°С проницаемость имела
значение около 11000. На рисунке 89)
представлена графически зависимость
от температуры в данном случае, т. е. при
H=0,3
эрстеда.
Здесь весьма
отчетливо видно, насколько внезапно
магнитная проницаемость данного образца
железа падает при приближении температуры
его к 786°С. Когда материал был подвергнут
действию сравнительно более сильного
поля, переход от магнитного состояния
к немагнитному совершался более плавно,
но потеря
153
магнитных свойств
столь же полная, и происходит это при
той же температуре, что и раньше. Гопкинсон
назвал ее критической температурой.
На рисунках 90 и 91 представлена зависимость
от температуры
при
H=4
эрстедам,
H=45
эрстедам,
для того же сорта
железа, к которому относится и рисунок
89. В случае H=4
эрстедам, по мере повышения температуры
еще наблюдается некоторый подъем ,
и это
продолжается приблизительно до 650°.
Затем довольно
быстро падает. В случае же Н=45
эрстедам, повышения
по мере повышения температуры совсем
не наблюдается. В пределах от 0 до 500°С
магнитная проницаемость практически
сохраняется неизменною, а при дальнейшем
нагревании начинает медленно падать и
сравнительно медленно же падает до
предельного значения =1,1
при температуре в 786° С. Критическая
температура различных сортов железа и
стали колеблется, как показали
исследования, в пределах от 690° до 870°С.
У кобальта критическая температура
равна приблизительно 1000°, у никкеля
—около 310°С.
Из приведенных на
рисунках 89, 90 и 91 кривых ясно, что в
пределах нормальных рабочих температур,
встречающихся в обычной электротехнической
практике, изменение магнитных свойств
железа и стали в зависимости от нагревания
настолько ничтожно, что при всякого
рода расчетах им можно пренебречь.
На рисунке 92
приведены еще характерные кривые,
представляющие результаты наблюдений
Гопкинсона над ходом намагничения
железа при разных температурах.
Здесь
кривая I
дает зависимость В
от
Н
при
температуре в 10°. Кривая 11 дает ту же
зависимость при температуре в 670°. Кривая
III
построена для
154
температуры
около 742°, и, наконец, кривая IV
— для температуры около 771°. На рисунке
93 представлены начальные части этих
кривых.
Здесь
масштаб Н
взят
нарочно большим, чтобы наглядно показать
относительное расположение кривых и
их пересечение. Обозначения кривых те
же, что и на рисунке 92.
Из
всех приведенных кривых отчетливо
видно, что чем слабее магнитное поле,
воздействующее на железо, тем большее
значение имеет повышение температуры
в смысле достижения высших степеней
намагничения. В этом отношении мы имеем
полную аналогию с влиянием сотрясений
на магнитные свойства ферромагнитных
материалов (см. § 39). В данном случае
гипотеза элементарных магнитов дает
возможность высказать предположение,
что с повышением температуры устойчивость
отдельных групп магнитиков должна
уменьшаться, так как при этом возрастает
общая подвижность всех молекул тела.
Надо полагать, что при приближении
к критической температуре эта подвижность
настолько уже велика, что достаточно
небольших добавочных воздействий со
стороны слабой намагничивающей силы
для того, чтобы нарушить исходные
группировки молекулярных магнитиков
и ориентировать ихв
направлении поля.
155
Есть
много данных в пользу того предположения,
что при переходе через критическую
температуру железо я
другие
магнитные материалы вообще претерпевают
какое-то резкое изменение в своих
свойствах. Так, при переходе через
критическую температуру резко меняются
термо-электрические свойства, а также
электрическое сопротивление материала.
Далее, железо и сталь, предварительно
нагретые выше критической температуры,
при остывании темнеют до достижения
этой температуры и затем внезапно
вспыхивают, проходя через нее. Это
последнее явление, открытое Барретом.
было им названо рекалесценцией.
Выяснилось,
что температура рекалесценции как раз
и есть температура критическая в
магнитном отношении. Современная
металлургия в полной мере выяснила
сущность того, что происходит с
железом и другими подобными материалами
при переходе через критическую
температуру. Именно, при этом происходит
очень быстрое изменение молекулярного
строения вещества, связанное с превращением
одной модификации его (магнитной)
в другую (немагнитную).
Кроме
тех изменений магнитных качеств железа,
которые обнаруживаются немедленно
при повышении температуры его, на
практике приходится встречаться еще с
одним явлением, которое также повидимому
обусловливается нагреванием. Речь идет
о так называемом старении
железа. Этот
процесс протекает очень медленно
при сравнительно низких температурах
и выражается между прочим в изменении
потерь на гистерезис, которые обычно
возрастают с течением времени. Такое
возрастание потерь на гисте-
156
резис
в прежнее время нередко наблюдалось
при работе трансформаторов переменного
тока, для изготовления которых применялось
простое железо. Есть основание полагать,
что в данном случае мы имеем дело с
медленным изменением молекулярного
строения железа. Опыт показывает,
что процесс старения ускоряется при
нагревании. В частности при температурах
порядка 150°—200° процесс этот протекает
в несколько дней, в то время как при
температурах порядка 50° он протекает
годы, прежде чем железо придет в некоторое
установившееся состояние. В связи с
тем, что явление впервые было наблюдено
в
трансформаторах,
сначала высказывалось предположение,
что возрастание потерь нагистерезис
представляет собою результат некоторой
усталости материала, происходящей
вследствие непрерывного перемагничивания,
подобно усталости упругого тела,
подверженного повторным механическим
напряжениям. Юинг, однако, показал, что
переменное намагничение само по себе
не производит никакого действия. Мордей
выяснил совершенно определенно, что
возрастание потерь на гистерезис
происходит исключительно благодаря
длительному нагреванию материала.
Это было затем подтверждено исследованием
Роджета. Для иллюстрации сказанного
выше о старении железа приведены на
рисунке 94 кривые гистерезиса, полученные
Роджетомдля
некоторого сорта железа при
Bmax=4000
гауссов.
Здесь изображены
три цикла. Первый характеризует железо
в начальной стадии, т. е. до нагревания.
Второй — через 19 часов нагревания при
200°. Третий цикл характеризует материал
после нагревания при той же температуре
в течение 4 дней. За это время был пройден
максимум потерь на гистерезис.
В настоящее время
в области электрического машиностроения
и аппаратостроения вопрос о старении
железа потерял свою остроту, благодаря
тому, что удалось получить сплавы железа,
обладающие весьма устойчивыми магнитными
качествами (например, кремнистое железо).
Еще со времен Гильберта было известно, что железо и сталь теряют свои магнитные свойства, будучи нагреты до светло-красного каления. Они при этом перестают намагничиваться и не притягиваются магнитом, но при охлаждении восстанавливают свои обычные качества. То же происходит при несколько более высокой температуре с кобальтом и при более низкой — с никкелем. Вообще говоря, переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела.
В виде примера приведем данные, которые былиполучены: Гопкинсоном во время одного опыта с куском кованого железа. Когда этот материал был подвергнут действию слабого магнитного поля (H=0,3 эрстеда), его магнитная проницаемость непрерывно возрастала с повышением температуры сначала медленно, затем все быстрее и быстрее и так далее, до предельной температуры, которая в описываемом случае оказалась равной 775° С. При этой температуре магнитная проницаемость во много раз больше, чем в случае холодного железа. При дальнейшем нагревании последовала чрезвычайно быстрая потеря магнитных свойств: когда температура поднялась всего только на 11°, т. е. до 786°С, железо сделалось практически немагнитным. Его магнитная проницаемость стала равной 1,1, между тем как при 775°С проницаемость имела значение около 11000. На рисунке 89) представлена графически зависимость m от температуры в данном случае, т. е. при H=0,3 эрстеда.
Здесь весьма отчетливо видно, насколько внезапно магнитная проницаемость данного образца железа падает при приближении температуры его к 786°С. Когда материал был подвергнут действию сравнительно более сильного поля, переход от магнитного состояния к немагнитному совершался более плавно, но потеря
магнитных свойств столь же полная, и происходит это при той же температуре, что и раньше. Гопкинсон назвал ее критической температурой. На рисунках 90 и 91 представлена зависимость mот температуры при
H=4 эрстедам,
H=45 эрстедам,
для того же сорта железа, к которому относится и рисунок 89. В случае H=4 эрстедам, по мере повышения температуры еще наблюдается некоторый подъем m, и это продолжается приблизительно до 650°. Затем mдовольно быстро падает. В случае же Н=45 эрстедам, повышения m по мере повышения температуры совсем не наблюдается. В пределах от 0 до 500°С магнитная проницаемость практически сохраняется неизменною, а при дальнейшем нагревании начинает медленно падать и сравнительно медленно же падает до предельного значения m=1,1 при температуре в 786° С. Критическая температура различных сортов железа и стали колеблется, как показали исследования, в пределах от 690° до 870°С. У кобальта критическая температура равна приблизительно 1000°, у никкеля —около 310°С.
Из приведенных на рисунках 89, 90 и 91 кривых ясно, что в пределах нормальных рабочих температур, встречающихся в обычной электротехнической практике, изменение магнитных свойств железа и стали в зависимости от нагревания настолько ничтожно, что при всякого рода расчетах им можно пренебречь.
На рисунке 92 приведены еще характерные кривые, представляющие результаты наблюдений Гопкинсона над ходом намагничения железа при разных температурах.
Здесь кривая I дает зависимость В от Н при температуре в 10°. Кривая 11 дает ту же зависимость при температуре в 670°. Кривая III построена для
температуры около 742°, и, наконец, кривая IV — для температуры около 771°. На рисунке 93 представлены начальные части этих кривых.
Здесь масштаб Н взят нарочно большим, чтобы наглядно показать относительное расположение кривых и их пересечение. Обозначения кривых те же, что и на рисунке 92.
Из всех приведенных кривых отчетливо видно, что чем слабее магнитное поле, воздействующее на железо, тем большее значение имеет повышение температуры в смысле достижения высших степеней намагничения. В этом отношении мы имеем полную аналогию с влиянием сотрясений на магнитные свойства ферромагнитных материалов (см. § 39). В данном случае гипотеза элементарных магнитов дает возможность высказать предположение, что с повышением температуры устойчивость отдельных групп магнитиков должна уменьшаться, так как при этом возрастает общая подвижность всех молекул тела. Надо полагать, что при приближении к критической температуре эта подвижность настолько уже велика, что достаточно небольших добавочных воздействий со стороны слабой намагничивающей силы для того, чтобы нарушить исходные группировки молекулярных магнитиков и ориентировать ихв направлении поля.
Есть много данных в пользу того предположения, что при переходе через критическую температуру железо я другие магнитные материалы вообще претерпевают какое-то резкое изменение в своих свойствах. Так, при переходе через критическую температуру резко меняются термо-электрические свойства, а также электрическое сопротивление материала. Далее, железо и сталь, предварительно нагретые выше критической температуры, при остывании темнеют до достижения этой температуры и затем внезапно вспыхивают, проходя через нее. Это последнее явление, открытое Барретом. было им названо рекалесценцией. Выяснилось, что температура рекалесценции как раз и есть температура критическая в магнитном отношении. Современная металлургия в полной мере выяснила сущность того, что происходит с железом и другими подобными материалами при переходе через критическую температуру. Именно, при этом происходит очень быстрое изменение молекулярного строения вещества, связанное с превращением одной модификации его (магнитной) в другую (немагнитную).
Кроме тех изменений магнитных качеств железа, которые обнаруживаются немедленно при повышении температуры его, на практике приходится встречаться еще с одним явлением, которое также повидимому обусловливается нагреванием. Речь идет о так называемом старении железа. Этот процесс протекает очень медленно при сравнительно низких температурах и выражается между прочим в изменении потерь на гистерезис, которые обычно возрастают с течением времени. Такое возрастание потерь на гисте-
резис в прежнее время нередко наблюдалось при работе трансформаторов переменного тока, для изготовления которых применялось простое железо. Есть основание полагать, что в данном случае мы имеем дело с медленным изменением молекулярного строения железа. Опыт показывает, что процесс старения ускоряется при нагревании. В частности при температурах порядка 150°—200° процесс этот протекает в несколько дней, в то время как при температурах порядка 50° он протекает годы, прежде чем железо придет в некоторое установившееся состояние. В связи с тем, что явление впервые было наблюдено в трансформаторах, сначала высказывалось предположение, что возрастание потерь нагистерезис представляет собою результат некоторой усталости материала, происходящей вследствие непрерывного перемагничивания, подобно усталости упругого тела, подверженного повторным механическим напряжениям. Юинг, однако, показал, что переменное намагничение само по себе не производит никакого действия. Мордей выяснил совершенно определенно, что возрастание потерь на гистерезис происходит исключительно благодаря длительному нагреванию материала. Это было затем подтверждено исследованием Роджета. Для иллюстрации сказанного выше о старении железа приведены на рисунке 94 кривые гистерезиса, полученные Роджетомдля некоторого сорта железа при
Bmax=4000 гауссов.
Здесь изображены три цикла. Первый характеризует железо в начальной стадии, т. е. до нагревания. Второй — через 19 часов нагревания при 200°. Третий цикл характеризует материал после нагревания при той же температуре в течение 4 дней. За это время был пройден максимум потерь на гистерезис.
В настоящее время в области электрического машиностроения и аппаратостроения вопрос о старении железа потерял свою остроту, благодаря тому, что удалось получить сплавы железа, обладающие весьма устойчивыми магнитными качествами (например, кремнистое железо).
Дата публикования: 2014-11-03; Прочитано: 9803 | Нарушение авторского права страницы
studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования
(0.002 с)…
Физика, 11 класс
Урок 4. Магнитные свойства вещества. Электроизмерительные приборы
Перечень вопросов, рассматриваемых на уроке:
1. Магнитные свойства вещества.
2. Свойства диа-, пара- и ферромагнетиков.
3. Принцип действия электроизмерительных приборов.
Глоссарий по теме:
Магнитная проницаемость – это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.
Диамагнетики – вещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут.
Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина.
Ферромагнетики – вещества у которых магнитная проницаемость много больше единицы. Это железо, никель, кобальт, и сплавы металлов.
Точка Кюри – температура, при которой ферромагнетики теряют ферромагнитные свойства.
Ферриты – ферромагнитные материалы, не проводящие электрического тока.
Основная и дополнительная литература по теме:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 27-30.
2.Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 113.
3. ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.
Теоретический материал для самостоятельного изучения.
Все вещества в окружающей нас природе в какой — то мере обладают магнитными свойствами. Ещё с глубокой древности была известна способность некоторых минералов притягивать железные предметы. Среди многих приборов навигации, необходимых для прокладывания курса кораблей или самолётов, обязательно должен быть и магнитный компас. Во многих измерительных приборах основными деталями служат постоянные магниты. Что же происходит с веществом, помещённом в магнитное поле? Вспомним, как магнитные свойства катушки, по которой течёт ток, усиливаются, если в катушку вставлен железный сердечник. Железный сердечник намного увеличивает магнитное поле в катушке с током. Мы знаем, что вокруг катушки с электрическим током возникает магнитное поле, а железный сердечник, создаёт своё магнитное поле и, согласно принципу суперпозиции полей, векторы этих двух полей складываются. Таким образом, мы наблюдаем усиление магнитного поля. Магнитную индукцию, создаваемую электрическим током, обозначим через (В0). Магнитную индукцию поля в веществе обозначим через (В). При введении железного сердечника, появляется магнитная индукция поля, возникающая благодаря намагничиванию вещества (В1). Эти поля складываются по принципу суперпозиции полей. В итоге мы наблюдаем, что вещество может усилить или, возможно ослабить магнитное поле. Магнитная индукция поля, создаваемого этими токами в вакууме, будет меньше, чем магнитная индукция поля в веществе.
Магнитной проницаемостью вещества называется физическая скалярная величина показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.
Французский физик Андре Мари Ампер сравнивал магнитные поля, создаваемые полосовым магнитом и проводниками с током. В итоге, Ампер выдвинул гипотезу, что внутри молекул и атомов циркулируют элементарные электрические токи. Круговые электрические токи – это токи, обусловленные орбитальными движениями электронов вокруг ядра.
Английский физик Майкл Фарадей исследовал влияние вещества на магнитное поле. В итоге, он определил, что все вещества изменяют магнитное поле, если их поместить во внешнее магнитное поле. Получается если вещество поместить во внешнее магнитное поле, оно становится источником своего магнитного поля. Это явление называют намагничиванием. Таким образом, Майкл Фарадей обнаружил, что вещества делятся на три группы — диа-, пара-, и ферромагнетики.
Диамагнетики – этовещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут. Магнитная проницаемость висмута равна 0,9998. Значит, магнитное поле ослабляется, когда в него помещают это вещество В˂В0. Это означает, что вектор магнитной индукции поля, создаваемого веществом направлен противоположно вектору магнитной индукции поля, создаваемого током.
Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина. Эти вещества намагничиваются очень слабо, намагничиваются вдоль намагничивающего поля. Вектор магнитной индукции поля, создаваемого веществом, направлен в ту же сторону, что и вектор магнитной индукции поля, создаваемого током.
Ферромагнетики – это вещества, у которых магнитная проницаемость во много раз больше единицы. Это такие вещества как железо, кобальт, никель и сплавы металлов. Для железа магнитная проницаемость равна одна тысяча (1000).
Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения. Собственный вращательный момент (момент импульса) электрона называется спином. Согласно простейшим представлениям, электроны вращаясь вокруг собственной оси обладая зарядом, имеют, магнитное поле наряду с полем, появляющимся за счёт их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемыми доменами; размеры доменов порядка 0.5 мкм. Параллельная ориентация спинов обеспечивает доменам минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична и суммарное магнитное поле, создаваемой доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля
Ферромагнитные свойства у веществ существуют только в определённой области температуры. Температура, при которой ферромагнитные материалы теряют свои ферромагнитные свойства, называют точкой Кюри по имени открывшего данное явление французского учёного Пьера Кюри. Если сильно нагреть намагниченный образец, то он потеряет способность притягивать железные предметы. Точка Кюри для железа 753 градусов по Цельсию, для кобальта 1000 градусов по Цельсию. Существуют ферромагнитные сплавы, у которых точка Кюри менее 100 градусов. Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А.Г. Столетовым.
Большое применение получили ферромагнитные материалы, не проводящие электрического тока – ферриты. Это химические соединения оксидов железа с оксидами других веществ. К их числу относится и магнитный железняк.
Стальной или железный сердечник в катушке усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромегнетиков. При выключении внешнего магнитного поля ферромагнетик остаётся намагниченным, таким образом создаёт магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты. Постоянные магниты широко применяются в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т.д. Электроизмерительный прибор является необходимым устройством в связи, промышленности, на транспорте, в медицине и в научных исследованиях.
Примеры и разбор решения заданий:
1. Для каких целей применяют ферромагнитные материалы? Выберите один правильный ответ.
Варианты ответов:
1) для усиления силы тока;
2) для ослабления магнитного поля;
3) для усиления магнитного поля;
4) для ослабления силы тока.
Пояснение: ферромагнетики и ферромагнитные материалы это вещества, которые создают наиболее сильные магнитные поля.
Правильный ответ: 3) для усиления магнитного поля.
2. По графику определите магнитную проницаемость стали при индукции В0 намагничивающего поля 1) 0,4 мТл, 2) 1,2 мТл.
Дано:
1) B0 = 0.4 мТл
2) B0 = 1,2 мТл
µ1 -? µ2 -?
Решение:
По определению магнитная проницаемость µ показывает, во сколько раз индукция магнитного поля В в веществе превышает индукцию намагничивающего поля В0 в вакууме: µ =
- При В0 = 0,4 мТл по графику находим что В = 0,8 Тл, следовательно:
2) При В0 = 1.2 мТл, по графику В = 1,2 Тл
Следовательно:
Ответ: µ1 = 2000; µ2 = 1000