От каких причин зависят свойства тел
Взаимодействие тел, инертность, масса
Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.
Установились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.
Инертность – это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.
Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)
Мерой инертности является инертная масса.
Масса (инертная) – мера инертности тела.
Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение: a∼1mboxed{asimfrac 1m}.
Данная зависимость записана единственно правильным способом, т. к. форма m∼1am sim frac 1a не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела.
Данная зависимость подтверждается многочисленными опытными результатами.
Рис. 2 Измерение массы методом взаимодействия тел.
Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться не которое время с ускорением (рис. 1) . Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс:
[frac{a_1}{a_2} = frac{m_2}{m_1};]
если взять первую массу за эталонную (m1=mэтm_1 = m_mathrm{эт}), то m2=mэтaэтa2m_2 = m_mathrm{эт}frac{a_mathrm{эт}}{a_2}.
Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.
Измерение массы методом взвешивания тел.
Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).
Рис. 2
Рис. 3 |
Масса, измеренная путём взвешивания, называется гравитационной.
В качестве эталона и той и другой массы принята масса тела, выполненного в форме цилиндра высотой 39 мм39 mathrm{мм} и диаметром 39 мм39 mathrm{мм}, изготовленного из сплава 10 % иридия и 90 % платины (рис. 3).
В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до 10-1210^{-12} % эти массы равны.
Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.
Принцип эквивалентности утверждает, что
1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.
2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.
Пример 1.
Два тела массами 400 г400 mathrm{г} и 600 г600 mathrm{г} двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с3 mathrm{м}/mathrm{с}?
Решение.
Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторы е средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: a1a2=m2m1frac{a_1}{a_2} = frac{m_2}{m_1}. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:
[frac{m_2}{m_1} = frac{a_1}{a_2} = frac{frac{Delta v_1}{Delta t}}{frac{Delta v_2}{Delta t}} = frac{v_mathrm{к1}-v_{01}}{v_mathrm{к2}-v_{02}} = frac{v_{01}}{v_{02}},]
откуда получим искомую скорость: v02=m1m2·v01.v_{02} = frac{m_1}{m_2}cdot v_{01}.
Количественно ответ будет таким: v02=0,4 кг0,6 кг·3 мс=2 мсv_{02} = frac{0,4 mathrm{кг}}{0,6 mathrm{кг}}cdot 3 frac{mathrm{м}}{mathrm{с}} = 2 frac{mathrm{м}}{mathrm{с}}.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 апреля 2019;
проверки требуют 9 правок.
Теплово́е излуче́ние — электромагнитное излучение, испускаемое телами за счёт их внутренней энергии. Излучается телами, имеющими температуру больше 0 К, то есть разными нагретыми телами, поэтому и называется тепловым. Имеет сплошной спектр, расположение и интенсивность максимума которого зависят от температуры тела. При остывании последний смещается в длинноволновую часть спектра[1].
Тепловое излучение испускают, например, нагретый металл, земная атмосфера и белый карлик[1][2].
Причиной того, что вещество излучает электромагнитные волны, является устройство атомов и молекул из заряженных частиц, из-за чего вещество пронизано электромагнитными полями. В частности, при столкновениях атомов и молекул происходит их ударное возбуждение с последующим высвечиванием. Характерной чертой является то, что при усреднении коэффициента излучения по максвелловскому распределению, начиная с энергий hν ∼ kT, в спектре начинается экспоненциальный завал.[3]
В случае если излучение находится в термодинамическом равновесии с веществом, то такое излучение называется равновесным. Спектр такого излучения эквивалентен спектру абсолютно чёрного тела и описывается законом Планка. Однако в общем случае тепловое излучение не находится в термодинамическом равновесии с веществом, таким образом более горячее тело остывает, а более холодное наоборот нагревается. Спектр такого излучения определяется законом Кирхгофа.
Основные понятия и свойства теплового излучения[править | править код]
Энергетическая светимость тела[править | править код]
Энергетическая светимость тела — физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.
; Дж/(с·м²) = Вт/м²
Спектральная плотность энергетической светимости[править | править код]
Спектральная плотность энергетической светимости — функция частоты и температуры, характеризующая распределение энергии излучения по всему спектру частот (или длин волн).
Аналогичную функцию можно написать и через длину волны
Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:
Поглощающая способность тела[править | править код]
Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи
где — поток энергии, поглощающейся телом.
— поток энергии, падающий на тело в области вблизи
Отражающая способность тела[править | править код]
Отражающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи
где — поток энергии, отражающейся от тела.
— поток энергии, падающий на тело в области вблизи .
Абсолютно чёрное тело[править | править код]
Абсолютно чёрное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение
— для абсолютно чёрного тела.
Серое тело[править | править код]
Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры
— для серого тела.
Объёмная плотность энергии излучения[править | править код]
Объёмная плотность энергии излучения — — функция температуры, численно равная энергии электромагнитного излучения в единице объёма по всему спектру частот.
Спектральная плотность энергии[править | править код]
Спектральная плотность энергии — — функция частоты и температуры, связанная с объёмной плотностью излучения формулой:
Следует отметить, что спектральная плотность энергетической светимости для абсолютно чёрного тела связана со спектральной плотностью энергии следующим соотношением:
— для абсолютно чёрного тела.
Основные законы теплового излучения[править | править код]
- Закон Стефана — Больцмана
- Закон излучения Кирхгофа
- Закон смещения Вина
Литература[править | править код]
- Ташлыкова-Бушкевич И. И. Физика. Уч. пособие. В 2 ч. Ч. 2. Минск, 2008
Примечания[править | править код]
Литература[править | править код]
- Тепловое излучение — статья из Большой советской энциклопедии.