От каких факторов зависят свойств оксидов
Взаимодействие оксидов с водой
Правило | Комментарий |
---|---|
Основный оксид + H2O → Щелочь | Реакция идет, если образуется растворимое основание, а также Ca(OH)2: CaO + H2O → Ca(OH)2 MgO + H2O → Реакция не идет, ак как Mg(OH)2 нерастворим* |
Амфотерный оксид | Амфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют |
Кислотный оксид + H2O → Кислота | Все реакции идут за исключением SiO2 (кварц, песок): SiO2 + H2O → реакция не идет |
* Источник: [2] «Я сдам ЕГЭ. Курс самоподготовки», стр. 143.
Взаимодействие оксидов друг с другом
1. Оксиды одного типа друг с другом не взаимодействуют:
Na2O + CaO → реакция не идет
CO2 + SO3 → реакция не идет
2. Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO2, SO2, о них подробнее ниже):
Na2O + SO3 → Na2SO4
CaO + CO2 → CaCO3
Na2O + ZnO → Na2ZnO2
Взаимодействие оксидов с кислотами
1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:
Na2O + HNO3 → NaNO3 + H2O
ZnO + 2HCl → ZnCl2 + H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O
Исключением является очень слабая нерастворимая (мета)кремниевая кислота H2SiO3. Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.
CuO + H2SiO3 → реакция не идет.
2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:
SO2 + 2H2S → 3S + 2H2O
SO3 + H2S → SO2 + H2O
SiO2 + 4HF(нед.) → SiF4 + 2H2O
С кислотами-окислителями (только если оксид можно окислить):
SO2 + HNO3 + H2O → H2SO4 + NO
Взаимодействие оксидов с основаниями
1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.
2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:
SiO2 + 2NaOH → Na2SiO3 +H2O
CO2 + 2NaOH → Na2CO3 + H2O
CO2 + NaOH → NaHCO3 (если CO2 в избытке)
3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:
а) Реакциях с растворами щелочей:
ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)
б) Сплавление с твердыми щелочами:
ZnO + 2NaOH → Na2ZnO2 + H2O (цинкат натрия)
(кислота: H2ZnO2)
BeO + 2NaOH → Na2BeO2 + H2O (бериллат натрия)
(кислота: H2BeO2)
Al2O3 + 2NaOH → 2NaAlO2 + H2O (алюминат натрия)
(кислота: HAlO2)
Взаимодействие оксидов с солями
1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:
SiO2 + CaCO3 → CaSiO3 + CO2
P2O5 + 3CaCO3 → Ca3(PO4)2 + 3CO2
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
ZnO + 2KHCO3 → K2ZnO2 + 2CO2 + H2O
SiO2 + K2SO3 → K2SiO3 + SO2
ZnO + Na2SO3 → Na2ZnO2 + SO2
Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K2CO3 + SO2 → K2SO3 + CO2 (H2CO3 слабее и менее устойчива, чем H2SO3)
2. Растворенный в воде CO2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO2 + H2O + CaCO3 → Ca(HCO3)2
CO2 + H2O + MgCO3 → Mg(HCO3)2
В тестовых заданиях такие реакции могут быть записаны как:
MgCO3 + CO2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.
Это один из способов получения кислых солей.
Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):
1. Реакции с CO, C и H2:
CuO + C → Cu + CO
CuO + CO → Cu + CO2
CuO + H2 → Cu + H2O
ZnO + C → Zn + CO
ZnO + CO → Zn + CO2
ZnO + H2 → Zn + H2O
PbO + C → Pb + CO
PbO + CО → Pb + CO2
PbO + H2 → Pb + H2O
FeO + C → Fe + CO
FeO + CО → Fe + CO2
FeO + H2 → Fe + H2O
Fe2O3 + 3C → 2Fe + 3CO
Fe2O3 + 3CО → 2Fe + 3CO2
Fe2O3 + 3H2 → 2Fe + 3H2O
WO3 + 3H2 → W + 3H2O
2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:
CaO + 3C → CaC2 + 3CO
2Al2O3 + 9C → Al4C3 + 6CO
3. Восстановление более активным металлом:
3FeO + 2Al → 3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3.
4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:
2P2O5 + 5C → 4P + 5CO2
SO2 + C → S + CO2
2NO + C → N2 + CO2
2N2O + C → 2N2 + CO2
SiO2 + 2C → Si + 2CO
Только оксиды азота и углерода реагируют с водородом:
2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O
SiO2 + H2 → реакция не идет.
В случае углерода восстановления до простого вещества не происходит:
CO + 2H2 <=> CH3OH (t, p, kt)
Особенности свойств оксидов CO2 и SO2
1. Не реагируют с амфотерными гидроксидами:
CO2 + Al(OH)3 → реакция не идет
2. Реагируют с углеродом:
CO2 + C → 2CO
SO2 + C → S + CO2
3. С сильными восстановителями SO2 проявляет свойства окислителя:
SO2 + 2H2S → 3S + 2H2O
SO2 + 4HI → S + 2I2 + 2H2O
SO2 + 2C → S + CO2
SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)
4. Сильные окислители окисляют SO2:
SO2 + Cl2 <=> SO2Cl2
SO2 + Br2 <=> SO2Br2
SO2 + NO2 → SO3 + NO
SO2 + H2O2 → H2SO4
5SO2 + 2KMnO4 +2H2O → 2MnSO4 + K2SO4 + 2H2SO4
SO2 + 2KMnO4 + 4KOH → 2K2MnO4 +K2SO4 + 2H2O
SO2 + HNO3 + H2O → H2SO4 + NO
6. Оксид углерода (IV) CO2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:
CO2 + 2Mg → 2MgO + C (t)
Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)
1. Необходимо помнить, что все оксиды азота являются сильными окислителями. Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах. Нужно лишь знать основные восстановители, такие как C, CO, H2, HI и йодиды, H2S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.
2NO2 + 4CO  → N2 + 4CO2
2NO2 + 2S → N2 + 2SO2
2NO2 + 4Cu → N2 + 4CuO
N2O5 + 5Cu → N2 + 5CuO
2N2O5 + 2KI → I2 + 2NO2 + 2KNO3
N2O5 + H2S → 2NO2 + S + H2O
2NO + 2H2 → N2 + 2H2O
2NO + C → N2 + CO2
2NO + Cu → N2 + 2Cu2O
2NO + Zn → N2 + ZnO
2NO + 2H2S → N2 + 2S + 2H2O
N2O + H2 → N2 + H2O
2N2O + C → 2N2 + CO2
N2O + Mg → N2 + MgO
2. Могут окисляться сильными окислителями (кроме N2O5, так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH → 2KNO3 + 3KCl + H2O
8NO + 3HClO4 + 4H2O → 8HNO3 + 3HCl
14NO + 6HBrO4 + 4H2O → 14HNO3 + 3Br2
NO + KMnO4 + H2SO4 → HNO3 + K2SO4 + MnSO4 + H2O
5N2O + 2KMnO4 + 3H2SO4 → 10NO + 2MnSO4 + K2SO4 + 3H2O.
3. Несолеобразующие оксиды N2O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).
Химические свойства CO как сильного восстановителя
1. Реагирует с некоторыми неметаллами:
2CO + O2 → 2CO2
CO + 2H2 <=> CH3OH (t, p, kt)
CO + Cl2 <=> COCl2 (фосген)
2. Реагирует с некоторыми сложными соединениями:
CO + KOH → HCOOK
CO + Na2O2 → Na2CO3
CO + Mg → MgO + C (t)
3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:
CO + CuO → Cu + CO2
3CO + Fe2O3 → 2Fe + 3CO2
3CO + Cr2O3 → 2Cr + 3CO2
2CO + SO2 → S + 2CO2 (Al2O3, 500°C)
5CO + I2O5 → I2 + 5CO2
4CO + 2NO2 → N2 + 4CO2
3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.
Химические свойства SiO2
1. Взаимодействует с активными металлами:
SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si
2. Взаимодействует с углеродом:
SiO2 + 2C → Si + 2CO
(Согласно пособию «Курс самоподготовки» Каверина, SiO2 + CO → реакция не идет)
3 С водородом SiO2 не взаимодействует.
4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:
SiO2 + 2NaOH → Na2SiO3 +H2O
SiO2 + CaO → CaSiO3
SiO2 + BaO → BaSiO3
SiO2 + Na2CO3 → Na2SiO3 + CO2
SiO2 + CaCO3 → CaSiO3 + CO2
SiO2 + Cu(OH)2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).
5. Из кислот SiO2 взаимодействует только с плавиковой кислотой:
SiO2 + 4HF → SiF4 + 2H2O.
Свойства оксида P2O5 как сильного водоотнимающего средства
HCOOH + P2O5 → CO + H3PO4
2HNO3 + P2O5 → N2O5 + 2HPO3
2HClO4 + P2O5 → Cl2O7 + 2HPO3.
Термическое разложение некоторых оксидов
В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины:
Основные:
4CuO → 2Cu2O + O2 (t)
2HgO → 2Hg + O2 (t)
Кислотные:
2SO3 → 2SO2 + O2 (t)
2N2O → 2N2 + O2 (t)
2N2O5 → 4NO2 + O2 (t)
Амфотерные:
4MnO2 → 2Mn2O3 + O2 (t)
6Fe2O3 → 4Fe3O4 + O2 (t).
Особенности оксидов NO2, ClO2 и Fe3O4
1. Диспропорционирование: оксидам NO2 и ClO2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO2 и хлорат и хлорит в случае ClO2:
2N+4O2 + 2NaOH → NaN+3O2 + NaN+5O3 + H2O
4NO2 + 2Ba(OH)2 → Ba(NO2)2 + Ba(NO3)2 + 2H2O
2NO2 + Na2CO3 → NaNO3 + NaNO2 + CO2
В аналогичных реакциях с кислородом образуются только соединения с N+5, так как он окисляет нитрит до нитрата:
4NO2 + O2 + 4NaOH → 4NaNO3 + 2H2O
4NO2 + O2 + 2H2O → 4HNO3 (растворение в избытке кислорода)
2Cl+4O2 + H2O → HCl+3O2 + HCl+5O3
2ClO2 + 2NaOH → NaClO2 + NaClO3 + H2O
2. Оксид железа (II,III) Fe3O4 (FeO·Fe2O3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:
Fe3O4 + 8HCl → FeCl2 + 2FeCl3 4H2O.
Тема № 10.
Химические свойства оксидов: основных, амфотерных, кислотных
Рекомендуемые видеоуроки
Теоретические сведения
Оксид — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом
Номенклатура оксидов
Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
NaI2O – оксид натрия; СаIIО – оксид кальция;
SIVO2 – оксид серы (IV); SVIO3 – оксид серы (VI).
Классификация оксидов
По химическим свойствам оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
– основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
– кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
– амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).
Основные оксиды
Основными называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами.
Основным оксидам соответствуют основания.
Например, оксиду кальция CaO отвечает гидроксид кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.
Химические свойства основных оксидов
1. Основные оксиды взаимодействуют с водой с образованием оснований.
Условие протекания реакции: должны образовываться растворимые основания!
Na2O + H2O → 2NaOH
CaO + H2O → Ca(OH)2
Al2O3 + H2O → реакция не протекает, так как должен образовываться Al(OH)3, который нерастворим.
2. Взаимодействие с кислотами с образованием соли и воды:
CaO + H2SO4 → CaSO4 + H2O.
3. Взаимодействие с кислотными оксидами с образованием соли:
СaO + SiO2→ CaSiO3
4. Взаимодействие с амфотерными оксидами:
СaO + Al2O3 → Сa(AlO2)2
Кислотные оксиды
Кислотными называются оксиды, которые образуют соли при взаимодействии с основаниями или основными оксидами. Им соответствуют кислоты.
Например, оксиду серы (IV) соответствует сернистая кислота H2SO3.
Химические свойства кислотных оксидов
1. Взаимодействие с водой с образованием кислоты:
Условия протекания реакции: должна образовываться растворимая кислота.
P2O5 + 3H2O → 2H3PO4
2. Взаимодействие со щелочами с образованием соли и воды:
Условия протекания реакции: с кислотным оксидом взаимодействует именно щелочь, то есть растворимое основание.
SO3 + 2NaOH → Na2SO4 + H2O
3. Взаимодействие с основными оксидами с образованием солей:
SO3 + Na2O → Na2SO4
Амфотерные оксиды
Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например: оксид алюминия Al2O3, оксид марганца (IV) MnO2.
Химические свойства амфотерных оксидов
1. C водой не взаимодействуют
2. Взаимодействие с кислотными оксидами с образованием солей при сплавлении (основные свойства):
ZnO + SiO2 → ZnSiO3
3. Взаимодействие с кислотами с образованием соли и воды (основные свойства):
ZnO + H2SO4 → ZnSO4 + H2O
4. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды (кислотные свойства):
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]
Al2O3 + 2NaOH → 2NaAlO2 + H2O
5. Взаимодействие с основными оксидами (кислотные свойства):
Al2O3 + CaO → Ca(AlO2)2
Интернет-источники
Характерными для оксидов и гидроксидов металлов являются кислотно-основные свойства. Как уже указано выше, эти свойства проявляются при взаимодействии оксидов в водой. Амфотерные оксиды с водой, как правило, не взаимодействуют, однако соответствующие им гидроксиды, образующиеся при обменных реакциях солей со щелочами, хорошо известны. [c.15]
Все органические кислоты—слабыа электролиты. В ряду производных метана самая сильная метановая, или муравьиная, кислота НСООН. С увеличением числа атомов углерода степень диссоциации кислот уменьшается. Свойства кислэт зависят также от алкильного радикала и от взаимного влияния друг на друга карбоксильной группы и алкильного радикала. Рассмотрим наиболее характерные для карбоновых кислот реакции. Подобно минеральным кислотам, органические кислоты взаимодействуют с металлами, оксидами и гидроксидами металлов, образуя соли карбоновых кислот, например [c.264]
При концентрировании микроколичеств веществ из сорбционных методов часто применяют избирательную адсорбцию. В качестве сорбента используют твердые фазы с высокоразвитой поверхностью — активированный уголь, кремнезем (силикагель), оксиды и гидроксиды металлов, их соли, синтетические полимерные вещества и др. [c.235]
Реагирует с оксидами и гидроксидами металлов с образованием солей. [c.161]
Какие из смесей а) оксида и гидроксида металла [c.118]
Карбонаты могут быть получены при взаимодействии СО2 с оксидами и гидроксидами металлов. Реакции протекают тем быстрее, чем больше растворим в воде соответствующий оксид или гидроксид металла. Например, реакция [c.91]
Гидроксид магния проявляет только основные свойства, хотя и слабые. Гидроксиды остальных элементов являются сильными основаниями. Их основные свойства возрастают по направлению к Ва(0Н)2 с увеличением радиусов ионов М + В этом же направлении увеличивается растворимость оксидов и гидроксидов металлов. [c.237]
Галогениды получают взаимодействием галогенов с простыми веществами, галогеноводородных кислот с металлами, оксидами и гидроксидами металлов, сульфидами и др. [c.258]
Все карбоновые кислоты — слабые электролиты и в химическом отношении ведут себя подобно неорганическим слабым кислотам. Они взаимодействуют с оксидами и гидроксидами металлов, образуя соли. [c.310]
Оксиды и гидроксиды металлов [c.116]
Поверхностное натяжение у твердых тел значительно больше, чем у жидкостей. При смачивании твердых тел жидкостями поверхностное натяжение на их границе дюжет быть заметно снижено. Вода, как правило, хорошо смачивает поверхность веществ, атомы которых соединены друг с другом ионной или полярной связью. Поверхности, хорошо смачиваемые водой, называются гидрофильными поверхности, не смачиваемые водой,— гидрофобными. Гидрофильны, например, почти все минералы, имеющие ионную кристаллическую решетку (силикаты, сульфаты, карбонаты, фосфаты, оксиды и гидроксиды металлов). [c.222]
От каких факторов зависят свойства оксидов и гидроксидов металлов Поясните на конкретных примерах. [c.121]
К веществам с гидрофильной поверхностью относятся кварц,, стекло, оксиды и гидроксиды металлов, окисленные минералы и т. д. Примерами объектов с гидрофобной поверхностью являются твердые углеводороды и их фторированные производные, листья растений, хитиновый покров насекомых, т[c.98]
Характер оксидов и гидроксидов металлов [c.277]
Сухая А.к. протекает по механизму низкотемпературного окисления, включающему след, стадии хемосорбция Oj и HjO на пов-сти металла с их диссоциацией образование зародышей кристаллизации оксидов и гидроксидов металла, тангенциальный рост кристаллов, слияние и образование сплошной, частично гидратированной оксидной пленки. При толщине пленки 2-5 нм дальнейшее окисление металла в чистой (без примесей) атмосфере прекращается. [c.213]
Научитесь составлять формулы оксидов и гидроксидов металлов, зная валентность металлов, которая указывается римскими цифрами в скобках. [c.89]
По химическим свойствам хлористоводородная кислота является типичной сильной кислотой. Она энергично растворяет многие металлы, образуя соль и выделяя водород, взаимодействует с оксидами и гидроксидами металлов, солями слабых кислот (сульфидами, карбонатами, фосфатами и др.). [c.13]
Представители суспензоидов — растворы оксидов и гидроксидов металлов, сульфидов и других неорганических солей — золи гидрофобные. Их концентрация обычно не превышает 0,1 %. Осадок таких растворов, остающийся после выпаривания, при соприкосновении с водой не способен вновь образовать коллоидный раствор, поэтому суспензоиды называют необратимыми коллоидами. [c.19]
Карбоновые кислоты растворяют многие оксиды и гидроксиды металлов, образующих ионы М , Гидроокиси и в карбоновых кислотах растворяются плохо, либо вовсе не растворяются. [c.484]
Данный патент привлекает внимание тем, что его реализация на шинных заводах России не представляет никаких сложностей ввиду доступности оксидов и гидроксидов металлов, особенно СаО. [c.182]
В материал покрытия, как уже отмечалось, вводят также добавки, замедляющие диффузию адсорбенты, иониты, вещества, реагирующие с кислотами, — металлы, оксиды и гидроксиды металлов, карбонаты и другие соли слабых кислот. Вводят неорганические добавки, активно взаимодействующие с водой или агрессивной средой с образованием системы неорганического клея — цемента, что вызывает увеличение водостойкости и химической стойкости покрытия. [c.261]
Коррозия начинается с поверхности металла и при дальнейшем развитии этого процесса, как правило, распространяется вглубь. Металл при этом может частично или полностью растворяться или же могут образоваться продукты коррозии в виде тонких нерастворимых плёнок, которые препятствуют дальнейшему а. рессивному влиянию среды (например, коррозия высоколегированных коррозионностойких сталей в воде и атмосфере). Могут образовываться также осадки на металле в виде оксидов и гидроксидов металла (например, ржавчина при коррозии углеродистой стали во влажной атмосфере, гидрат окисла цинка при коррозии цинка в воде, окалина при высокотемпературной коррозии стали в отсутствие влаги и т.д.). При этом под окалиной принято понимать толстые (видимые), более 5000 ангстрем, продукты в основном высокотемпературного окисления, образующиеся на поверхности стали и некоторых других сплавов при взаимодействии со средой, содержащей кислород, в отсутствие влаги. Для железа, в зависимости от температуры окисления окалина состоит в основном из ГеО(вюстиг), (гематит), (магнетит) или их сочетаний. [c.8]
Работоспособность клеевых соединений может быть повышена при использовании адгезионных грунтов, особенно грунтов с ингибиторами коррозии (см. гл. 4). Введение в их состав некоторых ароматических и гетероциклических веществ, легко взаимодействующих с оксидами и гидроксидами металлов (в частности, алюминия) с образованием водостойких комплексных соединений, способствует повышению водостойкости клеев [402]. В качестве таких добавок можно использовать, например, гидроксихинолин. [c.234]
Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]
Оксиды и гидроксиды металлов содержат ионы О п 0Н соответственно. Хотя в принципе атом кислорода может образовывать. максимум четыре ковалентные связи, так как у него имеется четыре орбитали, образование более чем двух существенно ковалентных связей наблюдается очень редко (см. ниже). Допуская, что расположение связей определяется числом ст-свя-зен и неподеленных электронных пар, можно обобщить данные о стереохимии кислорода (табл. 11,1). В таблицу включен ион НиаОСЬо (разд. 10.4.1), в котором кислород образует две линейные связи в этом ионе связи атомов кислорода имеют заметный кратный характер другие примеры можно найти при рассмотрении оксосолей. Линейные связи в соединении 5с251207 рассмотрены позднее. [c.191]
Большинство оксидов и гидроксидов металлов ПА подгр тшы обладают основными свойствами и диссощшруют в соответствии с уравнениями [c.11]
Пторой учащийся составляет формулы оксидов и гидроксидов металлов [c.90]
Так называемые первичные почвенные минералы представлены зернами относительно крупного размера. Многие из них являются источником ряда микроэлементов. Наиболее распространенный минерал в почвах — кварц иногда до 50—90 % твердых фаз почвы. Полевые шпаты больше подвержены выветриванию, чем кварц. Карбонаты (кальцит, доломит) и минералы средне- и легкорастворимых солей являются главными компонентами почв в аридной зоне и акцессорными в гумидной. Оксиды и гидроксиды металлов, часто в неокри-сталлизованной форме, характерны для гумидных регионов. [c.149]
Примерами гидрофильных золей, теряющих устойчивость лищь в концентрированных растворах электролитов, являются золи серы, оксидов и гидроксидов металлов и других соединений, дисперсная фаза которых сильно гидратирована за счет образования водородных связей с молекулами воды. Исследования стабильности и электрокинетического потенциала ряда гидрофобных золей (галогенидов серебра, сульфидов мышьяка и сурьмы), к которым были добавлены неионогенные поверх-ностно-активные вещества (оксиэтилированные эфиры этиленгликоля), показали, что образовавшиеся при этом дисперсии также представляют собой типичные лиофильные коллоидные растворы. Краснокутская и Сапон обнаружили, что с увеличением содержания ПАВ в растворе устойчивость золей в определенной области концентраций реагента возрастает настолько, что коагуляция наступает только в высококонцентрированных растворах солей. Таким образом, гидратированные молекулы неионных ПАВ, адсорбируясь на гидрофобных коллоидных частицах, превращают их в гидрофильные. При действии электролитов с однозарядными противоионами очень малые добавки ПАВ вызывают эффект сенсибилизации. При коагуляции высокоустойчивых коллоидных растворов, стабилизированных ПАВ, заряд противоионов, как у всех гидрофильных золей, не имеет существенного значения. Гидрофилизи-рованный золь становится чувствительным к совместному действию дегидратирующих агентов (например, этилового спирта или повышенных температур) и небольших количеств солей. Концентрация ПАВ, вызывающая превращение гидрофобного золя в гидрофильный, снижается с увеличением длины оксиэтиленовой цепи и углеводородного радикала молекулы ПАВ, но не связана с критической концентрацией мицеллообразования поверхностно-активного соединения. [c.23]
Оеобьгй и достаточно распространенный случай взаимодействия полярных адсорбентов с молекулами газов, паров и жидкостей — образорание водородных связей. Такие связи возникают, например, на гидроксидированной поверхности силикагелей, оксидов и гидроксидов металлов (железа, алюминия, титана, хрома), на природных алюмосиликатах. Наряду с поверхностными гидроксильными группами, на сорбентах органической природы существуют и другие функциональные группы содержащие атомы с неподеленными. парами электронов, обычно карбоксильные,. а минные, возможно, карбонильные группы и ряд других Такие функциональные группы в относительно небольшом количестве существуют и на поверхности многих неполярных адсорбентов, в том числе и на поверхности стенок пор активных углей. Энергия Н-связи в 2—4 раза превышает энергию дисперсионного взаимодействия адсорбированных молекул с поверхностью, и поэтому адсорбция молекул, возникающая за счет водородной связи, преобладает над адсорбцией молекул, адсорбирующихся только под воздействием дисперсионных сил. Следовательно, на а 1С0рбенте, поверхность которого содержит доста- У точное количество функциональных групп, способных образовывать водородные связи, т. е. на гидрофильном адсорбенте, из водных растворов преимущественно будут сорбироваться молекулы воды, тем более, что и их концентрация в растворе и у поверхности раздела фаз во много раз превышает концентрацию Других компонентов раствора. В водных растворах образование водородных связей между молекулами растворенного вещества и воды дает наиболее значительный вклад в энергию сольватации, противодействующую концентрированию молекул растворенных веществ у поверхности раздела фаз наряду с энергией диполь-дипольного и иои-дипольного взаимодействия в растворе. [c.25]
В последние годы в ряде индустриальных стран появились промышленные бутадиен-нитрильные карбоксилатные каучуки. Благодаря присутствию в их макромолекулах карбоксилатных групп такие каучуки могут вулканизоваться оксидами и гидроксидами металлов, диаминами, диизоцианатами, полиэпоксидами, гликолями и другими соединениями, образуя эластичные вулканизаты с ценным комплексом свойств. Наибольшее практическое значение получИли низкомолекулярные карбокст . V ные каучуки, информация о которых дана в разделе 3.5 [c.34]
Несмотря на это, водостойкость клеевых соединений алюминия при отслаивании (угол 180°С, фольга толщиной 0,1 мм отслаивается от металлической пластины) выше при подготовке по способу хемоксаль (рис. 6.11). Еще более высокую водостойкость обеспечивает дополнительная обработка оксидированного металла ароматическими или гетероциклическими комплексообразующими веществами (оксихинолин и др.). Они легко реагируют с оксидами и гидроксидами металлов с образованием абсолютно водостойких комплексов, которые, в свою очередь, могут химически взаимодействовать с клеями. Следует отметить, что четкой корреляции между устойчивостью к десорбции и длительной водостойкостью клеевых соединений не установлено. Это связано с тем, что разрушение клеевых соединений происходит не адгезионно, а по граничным слоям клея. [c.190]