Na2s какие свойства проявляет

Na2s какие свойства проявляет thumbnail

СЕРОВОДОРОД

 Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит,
растворим в воде (в 1V
H2O растворяется 3V H2S при н.у.); t°пл. = -86°C; t°кип. = -60°С.

Влияние сероводорода на организм:

Сероводород не толькоскверно
пахнет, он еще и чрезвычайно ядовит. При вдыхании этого газа в большом
количестве быстро наступает паралич дыхательных нервов, и тогда человек
перестает ощущать запах – в этом и заключается смертельная опасность
сероводорода.

Насчитывается
множество случаев отравления вредным газом, когда пострадавшими были
рабочие, на ремонте трубопроводов. Этот газ тяжелее, поэтому он
накапливается в ямах, колодцах, откуда быстро выбраться не так-то
просто.

Получение

1)    
 H2
+ S 
→ H2S↑ (при t) 

2)    
 FeS
+ 2HCl
→  FeCl2
+ H2S↑­ 

Химические свойства

1)     Раствор H2S в воде – слабая двухосновная кислота.

 Диссоциация происходит в две ступени:

H2S → H+
+ HS-
(первая ступень, образуется гидросульфид — ион)

 HS-  → 2H+ + S2-
(вторая ступень) 

Сероводородная
кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды):

Na2S – сульфид натрия;

CaS
– сульфид кальция;

NaHS
– гидросульфид натрия;

Ca(HS)2 – гидросульфид
кальция.

2)    
Взаимодействует с основаниями: 

H2S + 2NaOH(избыток) → Na2S + 2H2O

H2S (избыток) + NaOH → NaНS + H2O

3)     H2S проявляет очень сильные
восстановительные свойства: 

H2S-2
+ Br2 → S0 + 2HBr

H2S-2
+ 2FeCl3 → 2FeCl2 + S0 + 2HCl

H2S-2
+ 4Cl2 + 4H2O → 
H2S+6O4 + 8HCl

3H2S-2
+ 8HNO3(конц) →  3H2S+6O4
+ 8NO + 4H2O

H2S-2
+ H2S+6O4(конц) →  S0 + S+4O2 +
2H2O 

(при нагревании реакция идет по — иному:

H2S-2 + 3H2S+6O4(конц) 
→ 4S+4O2 + 4H2O

4)     Сероводород
окисляется:

при
недостатке
O2

2H2S-2 +
O2
→ 2S0
+
2H2O

при избытке O2

2H2S-2
+ 3O2 → 2S+4O2 + 2H2O 

5)     Серебро при контакте с сероводородом
чернеет:
 

4Ag
+ 2H2S + O2
→ 2Ag2S↓ + 2H2O 

Потемневшим
предметам можно вернуть блеск. Для этого в эмалированной посуде их кипятят с
раствором соды и алюминиевой фольгой. Алюминий восстанавливает серебро до
металла, а раствор соды удерживает ионы серы.

6)     Качественная реакция на сероводород и
растворимые сульфиды —
образование темно-коричневого (почти черного) осадка PbS: 

H2S +
Pb(NO3)2 → PbS↓ + 2HNO3

Na2S
+ Pb(NO3)2 → PbS↓ + 2NaNO3

Pb2+
+
S2-

PbS↓ 

Загрязнение атмосферы вызывает почернение
поверхности картин, написанных масляными красками, в состав которых входят
свинцовые белила.
Одной
из основных причин потемнения художественных картин старых мастеров было
использование свинцовых белил, которые за несколько веков, взаимодействуя со
следами сероводорода в воздухе (образуются в небольших количествах при гниении
белков; в атмосфере промышленных регионов и др.) превращаются в
PbS. Свинцовые белила – это пигмент, представляющий
собой карбонат свинца (
II).
Он реагирует с сероводородом, содержащимся в загрязнённой атмосфере, образуя
сульфид свинца (
II),
соединение чёрного цвета:

PbCO3 + H2S = PbS + CO2 + H2O

При обработке сульфида свинца (II) пероксидом водорода происходит реакция:

PbS +
4
H2O2 = PbSO4 + 4H2O,

при этом образуется сульфат свинца (II), соединение белого цвета.

Таким образом реставрируют почерневшие
масляные картины.

Na2s какие свойства проявляет

7)     Реставрация:
 

PbS
+ 4H2O2
→ PbSO4(белый)
+ 4H2O 

Сульфиды

Получение сульфидов

1)     Многие сульфиды получают нагреванием
металла с серой:
 

Hg
+ S

HgS

2)     Растворимые
сульфиды получают действием сероводорода  на щелочи: 

H2S + 2KOH →
K2S + 2H2O 

3)     Нерастворимые
сульфиды получают обменными реакциями: 

CdCl2
+ Na2S → 2NaCl + CdS↓

Pb(NO3)2
+ Na2S → 2NaNO3 + PbS↓

ZnSO4
+ Na2S → Na2SO4 + ZnS↓

MnSO4
+ Na2S → Na2SO4 + MnS↓

2SbCl3
+ 3Na2S → 6NaCl + Sb2S3↓

SnCl2
+ Na2S → 2NaCl + SnS↓

Химические свойства сульфидов

1)     Растворимые
сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют
щелочную реакцию: 

K2S +
H2O → KHS + KOH

S2- +
H2O → HS- + OH- 

2)     Сульфиды
металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в
сильных кислотах: 

ZnS + H2SO4
→ ZnSO4 + H2S­

3)    
Нерастворимые сульфиды можно перевести в растворимое состояние действием
концентрированной
HNO3

FeS2
+ 8HNO3 → Fe(NO3)3 + 2H2SO4
+ 5NO + 2H2O 

 ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Cu →CuS →H2S →SO2

Задание №2
Составьте
уравнения окислительно-восстановительных реакций полного и неполного
сгорания сероводорода. Расставьте коэффициенты методом электронного
баланса, укажите окислитель и восстановитель для каждой реакции, а так
же процессы окисления и восстановления.

Задание №3
Запишите
уравнение химической реакции сероводорода с раствором нитрата свинца
(II) в молекулярном, полном и кратком ионном виде. Отметьте признаки
этой реакции, является ли реакция обратимой?

Задание №4

Сероводород пропустили через 18%-ый раствор сульфата меди (II) массой
200 г. Вычислите массу осадка, выпавшего в результате этой реакции.

Задание №5
Определите объём сероводорода (н.у.), образовавшегося при взаимодействии
соляной кислоты с 25% — ым раствором сульфида железа (II) массой 2 кг?

Источник

Тиосульфат натрия

Систематическое
наименование
тиосульфат натрия
Традиционные названия гипосульфит
Хим. формула Na2S2O3, Na2S2O3·5H2O (кристаллогидрат)
Молярная масса 158,11 г/моль
Плотность 2,345 г/см³
Температура
 • плавления 48,5 °С (пентагидрат)
 • разложения 300 °C[1]
Растворимость
 • в воде 70,120; 22980 г/100 мл
Рег. номер CAS 7772-98-7
PubChem 24477
Рег. номер EINECS 231-867-5
SMILES

[Na+].[Na+].[O-]S([O-])(=O)=S

InChI

1S/2Na.H2O3S2/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2

AKHNMLFCWUSKQB-UHFFFAOYSA-L

Кодекс Алиментариус E539
RTECS XN6476000
ChEBI 132112
ChemSpider 22885
NFPA 704

1

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Тиосульфа́т на́трия (антихлор, гипосульфит, сульфидотриоксосульфат натрия, натрий серноватистокислый) — неорганическое соединение, соль натрия и тиосерной кислоты c химической формулой Na2S2O3 или Na2SO3S, образует кристаллогидрат состава Na2S2O3·5H2O. Применяется в медицине, фотографии и других отраслях промышленности.

Историческая справка[править | править код]

Тиосульфат натрия был получен, вероятно, впервые в 1799 году Шоссье[en], нагревавшим сульфат натрия с древесным углем. В 1877 году Вагнер рекомендовал название «тиосерная» для соответствующей кислоты, после чего термин «тиосульфат натрия» почти полностью вытеснил более раннее название «гипосульфит натрия» из химической литературы[2]. Тиосульфат натрия как реагент для титрования иода предложен в 1853 году Шварцем (Karl Leonhard Heinrich Schwarz, 1824–1890)[3].

Получение[править | править код]

  • окислением полисульфидов Na;
  • кипячение избытка серы с Na2SO3:
  • взаимодействием H2S и SO2 с NaOH (побочный продукт в производстве NaHSO3, сернистых красителей, при очистке промышленных газов от S):
  • кипячение избытка серы с гидроксидом натрия:

затем по приведённой выше реакции сульфит натрия присоединяет серу, образуя тиосульфат натрия.

Одновременно в ходе этой реакции образуются полисульфиды натрия (они придают раствору жёлтый цвет). Для их разрушения в раствор пропускают SO2.

  • чистый безводный тиосульфат натрия можно получить реакцией серы с нитритом натрия в формамиде. Эта реакция количественно протекает (при 80 °C за 30 минут) по уравнению:
  • растворение сульфида натрия в воде в присутствии кислорода воздуха:

Физические и химические свойства[править | править код]

Имеет вид бесцветных кристаллов. Образует три модификации: моноклинную α (a = 0,8513, b = 0,8158, c = 0,6425, β = 97,08°, z = 4, пространственная группа P21/c), а также β и γ. α-модификация переходит в β при температуре 330 °C, β переходит в γ при 380 °C. Плотность α-модификации 2,345 г/моль[4].

Растворим в воде (50,1 г/100 мл (0 °C), 70,2 г/100 мл (20 °C), 231,8 г/100 мл (80 °C))[4].

Молярная масса 248,17 г/моль (пентагидрат). При 48,5 °C кристаллогидрат растворяется в своей кристаллизационной воде, образуя перенасыщенный раствор; обезвоживается около 100оС.

При нагревании до 220 °C распадается по схеме:

Тиосульфат натрия — сильный восстановитель:

С сильными окислителями, например, свободным хлором, окисляется до сульфатов или серной кислоты:

Более слабыми или медленно действующими окислителями, например, иодом, переводится в соли тетратионовой кислоты:

Приведённая реакция очень важна, так как служит основой иодометрии. Следует отметить, что в щелочной среде окисление тиосульфата натрия иодом может идти до сульфата.

Выделить тиосерную кислоту (тиосульфат водорода) реакцией тиосульфата натрия с сильной кислотой невозможно, так как она неустойчива и тут же разлагается на воду, серу и диоксид серы:

Расплавленный кристаллогидрат Na2S2O3·5H2O очень склонен к переохлаждению.

Применение[править | править код]

  • для удаления следов хлора после отбеливания тканей;
  • для извлечения серебра из руд;
  • фиксаж в фотографии[5];
  • реактив в иодометрии;
  • противоядие при отравлении: As, Br, Hg и другими тяжёлыми металлами, цианидами (переводит их в роданиды) и др.;
  • для дезинфекции кишечника;
  • для лечения чесотки (совместно с соляной кислотой);
  • противовоспалительное и противоожоговое средство;
  • как среда для определения молекулярных весов по понижению точки замерзания (криоскопическая константа 4,26°);
  • в пищевой промышленности зарегистрирован в качестве пищевой добавки E539;
  • добавки для бетона;
  • для очищения тканей от иода;
  • марлевые повязки, пропитанные раствором тиосульфата натрия, использовали для защиты органов дыхания от отравляющего вещества хлора в Первую мировую войну;
  • антидот при передозировке лидокаина.

См. также[править | править код]

  • Неорганические тиосульфаты
  • Тиосульфат аммония
  • Тиосульфат натрия (лекарственное средство)

Примечания[править | править код]

Литература[править | править код]

  • Антихлор // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Петрашень В. И. Объемный анализ. — М.—Л.: Госхимиздат, 1946. — 292 с.
  • Гурлев Д. С. Справочник по фотографии (обработка фотоматериалов). — К.: Тэхника, 1988.
  • Куликова Л. Н. Натрия тиосульфат // Химическая энциклопедия: в 5 т. / И. Л. Кнунянц (гл. ред.). — М.: Большая Российская энциклопедия, 1992. — Т. 3: Меди—Полимерные. — С. 186—187. — 639 с. — 48 000 экз. — ISBN 5-85270-039-8.

Источник