Методы производство пищевых добавок
Внедрение научных открытий в производство — это залог экономической эффективности любого бизнеса. Применение инноваций зачастую способствует интенсификации технологических процессов, повышению эффективности и улучшению качества готовой продукции, а также более рациональному использованию сырья. Приведем краткий обзор новейших технологий, применяющихся в настоящее время в пищевой индустрии.
Научные достижения физики и химии в пищевой технологии
Прогрессивные разработки в области электротехники, химии, физики и биологии находят широкое практическое применение в производстве и хранении мясопродуктов, молочных и кондитерских изделий, полуфабрикатов, фруктов, овощей и сыпучих продуктов. Примером может служить процесс
искусственного копчения
. Данная пищевая технология была разработана в качестве альтернативы классическому дымовому копчению и позволила существенно сократить временные и материальные затраты на подготовку продуктов по данному методу. Коптильные жидкости добавляются со специями непосредственно в мясное сырье. Ускорение процесса пропитывания последнего достигается путем воздействия на продукт электрического поля. Таким образом период «копчения» мясопродуктов сокращается от нескольких суток всего до 4–6 минут.
Еще один метод — обработка радиоактивным излучением, или
радуризация
, — используется в пищевом производстве для уничтожения патогенных бактерий, задержки созревания плодов и замедления прорастания некоторых овощей. Обработка продуктов методом радиации широко используется при вялении и сушке, например, специй. Облучение оказывает эффект, аналогичный любой другой термической обработке, не изменяя внешнего вида и вкусовых качеств продукта и увеличивая срок хранения. Что особенно важно, многочисленные международные исследования, проводимые ВОЗ и ООН, не выявили неблагоприятного воздействия данной технологии на организм человека.
УФ-обработка
— пищевая технология, которая широко применяется для обеззараживания молочных изделий, воды и сыпучих продуктов. Ультрафиолет уничтожает все известные микроорганизмы, которые могут приводить к порче продуктов, включая бактерии, вирусы, дрожжи и плесень, и не вредит окружающей среде. В отличие от воздействия химических реагентов, УФ-излучение не вызывает образования токсинов и не изменяет химического состава продуктов.
Это интересно!
Наиболее ярко бактерицидный эффект ультрафиолета проявляется при длине волны 265 нм: УФ-лучи убивают микроорганизмы, проникая через их клеточные мембраны и повреждая ДНК. Последние испытания, проведенные на сыродельном заводе в Нидерландах, показали, что УФ-обработка уменьшает содержание термофильных бактерий на 99,3%, а бактериофагов — на 99,999%.
ИК-нагрев
(нагрев продуктов с помощью инфракрасного излучения) используется в пищевом производстве для выпечки, сушки, обжарки, копчения и стимуляции биохимических процессов. В частности, инфракрасная сушка позволяет практически полностью сохранить витамины и биологически активные вещества (порядка 80–90%), а также естественный цвет и вкус продуктов. Данный метод предоставляет возможность выпускать продукты, не содержащие консервантов и других химических веществ. При последующем замачивании высушенные продукты восстанавливают все свои натуральные органолептические, физические и химические свойства.
Диэлектрический нагрев
— метод нагрева переменным электрическим полем. В пищевом производстве используется сверхчастотный (СВЧ) нагрев, имеющий ряд преимуществ перед традиционными методами термической обработки:
- высокая скорость нагрева;
- сохранение витаминов и других полезных веществ продуктов;
- экономичность процесса;
- возможность создания температурной неравномерности.
Применение СВЧ-нагрева позволяет добиться почти полного извлечения масел из растительного сырья, а также сохранить их пищевую и биологическую ценность. В хлебопекарной и кондитерской промышленности СВЧ-обработка широко применяется для обеззараживания и улучшения пищевой ценности зерна. Кроме того, диэлектрический нагрев применяется для процессов размораживания, варки, выпечки, обеззараживания и экстрагирования.
Индукционный нагрев
используется для продуктов с повышенной влажностью. Реализуется с помощью внешнего переменного магнитного поля. Электромагнитная энергия рассеивается в объеме продукта, вызывая нагрев. Индукционные установки пока еще не получили широкого распространения на российских предприятиях, однако данная пищевая технология обладает значительными экономическими возможностями для успешного применения в будущем.
Криозаморозка
— один из современных способов сохранения продуктов питания. Данный метод заморозки осуществляется посредством использования криогенных газов в жидкой фазе — жидкий азот и углекислота. Преимущество технологии заключается в том, что во время процесса заморозки температура в камере мгновенно достигает -70 °С, благодаря чему не происходит разрушения межклеточной структуры продукта и, соответственно, ухудшения его вкусовых качеств. Второе преимущество — скорость процесса, которая дает минимальные изменения веса и внешнего вида продукта. Наконец, благодаря «шоковой» заморозке срок хранения продуктов значительно возрастает.
Производство пищевых продуктов с использованием крови, костей и субпродуктов
В пищевой индустрии любые отходы находят дальнейшее применение. Например, жидкое, мягкое и твердое сырье, полученное после убоя скота, широко используется в пищевом производстве. Кровь после специальной обработки применяется для производства колбасных изделий, гематогена. Жидкую пищевую сыворотку и плазму добавляют в вареные колбасы, рубленые полуфабрикаты и диетические продукты вместо мясного сырья. Высушенные белки сыворотки используются в качестве заменителя яичного белка в кондитерской и хлебобулочной промышленности. Костное сырье превращается в костную муку, которая также используется при производстве колбас и фарша. Аналогичным образом поступают с мягкими отходами — обрезки кожи, шкуры, сухожилия, уши, половые органы, кишки и другие субпродукты составляют основу фарша наравне с соевой мукой.
Применение данных технологий в пищевом производстве экономически обосновано. Использование пищевой цельной крови позволяет получить колоссальную экономию: например, замена 1 т говяжьего мяса цельной кровью экономит 150–180 тысяч рублей. Кроме того, повсеместное использование субпродуктов позволяет производить дополнительно тысячи тонн мясных продуктов и фарша, что значительно увеличивает потребление населением животных белков, так как кровь по количеству протеинов, соотношению аминокислот и степени усвояемости (95–98%) является высокоценным сырьем.
Ферменты и микробы в пищевой индустрии
Распространенной технологией в пищевом производстве является использование определенных видов микрофлоры при изготовлении ветчинных изделий и окороков. Специальные бактерии, выращенные в лабораторных условиях, участвуют в формировании вкуса и запаха, ускоряют ферментативные процессы, задерживают развитие патогенных микроорганизмов. Используемые бактерии главным образом принадлежат к группе молочнокислых бактерий и являются не только безвредными для человека, но даже полезными, так как стимулируют работу пищеварительной системы.
Ферменты, как и бактерии, играют двоякую роль в мясном производстве. Деятельность определенных видов ферментов необходимо подавлять во избежание развития гнилостных процессов, полезные же ферменты помогают улучшать консистенцию мяса, а также вкус, запах и перевариваемость продуктов. Ферменты применяются в виде порошка или раствора в основном при производстве окороков, полуфабрикатов и сублимированного мяса.
Применение пищевых волокон
Пищевые волокна широко используются в производстве продуктов питания в качестве добавок, изменяющих структуру и химические свойства пищевых продуктов. Плюс добавки заключается в том, что сами по себе пищевые волокна способны оказывать благоприятное воздействие на организм человека. Пищевое волокно — это съедобные части растений, устойчивые к перевариванию и адсорбции в тонком кишечнике человека, полностью или частично ферментируемые в толстом кишечнике. Использование пищевых волокон в пищевой промышленности позволяет без вреда, а иногда и с пользой для человека увеличить выход готового продукта и снизить его себестоимость. Например, пектин применяется в изготовлении мармелада, желе, конфитюров; гуммиарабик — в производстве эмульсий для напитков. Целлюлозу применяют в производстве хлебобулочных изделий, замороженных полуфабрикатов, экструдированных продуктов и макаронных изделий. Камедь используется для получения йогуртов и мороженного. Также широко применяются коммерческие препараты полисахаридов, полученные из красных и бурых морских водорослей, — альгинаты, каррагинаны и агароиды. В мире пищевые волокна применяются очень широко, однако в России их производство пока развито недостаточно.
Использование синтетических добавок
Синтетическими пищевыми добавками уже давно никого не удивишь — разнообразные ароматизаторы, красители, загустители, консерванты используются повсеместно в пищевом производстве и практически ни одна этикетка не обходится без них. Сегодня принято пугать потребителей наличием синтетических веществ, однако прежде чем поддаваться панике, необходимо разобраться, какие именно из добавок являются безвредными, какие могут использоваться в ограниченных количествах, а какие — нанести вред здоровью. Например, существуют натуральные красители, которые вырабатываются методом экстрагирования из фруктов и овощей, они являются безопасными. К относительно безопасным консервантам можно отнести сорбиновую кислоту, сорбат калия и сорбат кальция.
Что касается опасных добавок, то самыми нежелательными являются различные консерванты — нитриты и нитраты, без которых невозможно представить себе ни одно колбасное изделие. Также рекомендуется с осторожностью употреблять продукты, содержащие бензоат натрия (может приводить к нарушениям в обмене веществ и вызывать рак), подсластитель аспартам (способен вызывать мигрень, сыпь и ухудшение мозговой деятельности), усилитель вкуса глутамат натрия (приводит к отравлению при передозировках).
Особенности современного производства пищевой упаковки
Упаковочная индустрия является незаменимым элементом пищевого производства. Современные пищевые упаковки позволяют существенно увеличивать срок хранения продуктов, сберегая их вкусовые качества и внешний вид. На сегодняшний день выделяют три ключевых метода упаковки пищевых продуктов:
-
Вакуумизация.
Данная технология широко используется в пищевой промышленности для закатки заполненной продуктом тары. Так, от вакуумизации зависит герметичность банки, а следовательно, сохранность качества продукта при хранении. Кроме того, технология применяется при сублимационной сушке пищевых продуктов, которые в результате вакуумизации сохраняют вкусовые качества, питательные свойства и долго хранятся в обычных условиях. -
Асептическая упаковка.
Данная технология упаковки широко распространена в пищевом производстве. Ее суть заключается в том, что продукт и упаковка стерилизуются отдельно, а затем упаковка наполняется продуктом и закупоривается в стерильных условиях. Такой процесс обеспечивает долгую сохранность продукта без необходимости использования консервантов. Асептическая упаковка используется для молочных продуктов, напитков на основе сои, безалкогольных и спиртных напитков, супов, соусов и других жидких продуктов. -
Упаковка в газовой среде.
Использование модифицированной газовой среды позволяет увеличить срок хранения пищевых продуктов благодаря снижению развития микрофлоры. Данная технология используется в пищевом производстве главным образом для транспортировки и хранения свежего мяса, рыбы и птицы, а также полуфабрикатов, колбасных изделий, свежего хлеба, фруктов и овощей. С помощью специальной газовой среды вокруг продукта создается особая атмосфера, которая препятствует размножению бактерий и окислению жиров.
Эта пищевая технология применяется в странах Западной Европы и США уже более 20-ти лет, тогда как для России является относительно новой. На сегодняшний день существует три разновидности упаковывания в газовой среде:
- в среде инертного газа (N
2
, СО2
, Аr);
- в регулируемой газовой среде (РГС) — технология, требующая значительных капиталовложений в оборудование;
- в модифицированной газовой среде (MAP).
Последний способ получил наибольшее распространение ввиду своей экономичности и обеспечения сохранности продукции. В MAP применяется смесь кислорода, углекислого газа и азота, соотношение которых зависит от типа упаковываемого продукта. Углекислый газ подавляет рост бактерий и позволяет значительно увеличивать срок сохранности продуктов. Например, в упаковках с использованием модифицированной газовой среды свежее нарезанное мясо хранится до 12-ти суток, а готовые салаты — до 10-ти суток без консервантов, при этом нет необходимости в заморозке.
Высокие требования потребителей к качеству продуктов заставляют более активно использовать новейшие научные разработки в пищевой промышленности. Современные технологии стали неотъемлемой частью пищевого производства, позволив увеличить эффективность предприятий, работающих в данной отрасли, а также качество и количество выпускаемой продукции. Тем не менее далеко не все технологии, получившие распространение на Западе, нашли свое применение в России. В связи с этим для российского пищевого производства вопрос внедрения новейших разработок является весьма актуальным.
Аннотация:
Изобретение относится к пищевой промышленности и может быть использовано при производстве пищевых добавок. Способ включает прессование жома топинамбура, сушку жома после прессования и измельчение высушенного жома. При этом жом топинамбура перед сушкой обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180-300 Вт/дм в течение 30-90 секунд. Сушку обработанного жома топинамбура проводят при температуре 60-70°C, а перед измельчением высушенный жом охлаждают до температуры 20-25°C. Измельчение жома проводят до размера частиц не более 0,05 мм. Изобретение позволяет получить пищевую добавку с повышенным количеством физиологически ценных макро- и микронутриентов, а также повышенной водопоглощающей и водоудерживающей способностью. 1 табл., 2 пр.
Основные результаты:
Способ получения пищевой добавки, включающий прессование жома топинамбура, сушку жома после прессования и измельчение высушенного жома, отличающийся тем, что жом топинамбура перед сушкой обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180-300 Вт/дм в течение 30-90 секунд, сушку обработанного жома топинамбура проводят при температуре 60-70°C, а перед измельчением высушенный жом охлаждают до температуры 20-25°C, при этом измельчение проводят до размера частиц не более 0,05 мм.
Изобретение относится к пищевой промышленности и может быть использовано при производстве пищевых добавок.
Наиболее близким к заявляемому изобретению является способ получения пищевой добавки — пищевых волокон из жома топинамбура, включающий экстрагирование жома подкисленной лимонной кислотой до рН 5,0-5,2 водой при соотношении «измельченный жом-экстрагент», равном 1:1,5 и температуре 80-85°C в течение 15 минут, прессование, сушку отпрессованного после экстрагирования жома при температуре 100-105°C до остаточной влажности 8,5-10%, его дробление с последующим фракционированием и удалением ферропримесей (Патент РФ №2492704, A23L 1/214, 20.09.2013 Бюл. №26).
Недостатками известного способа являются высокие температуры сушки, что приводит к снижению пищевой ценности добавки, а также к снижению эффективности проявления добавкой технологических свойств — водоудерживающей и водопоглощающей способностей.
Технический результат предлагаемого изобретения заключается в повышении пищевой ценности и технологических свойств готового продукта.
Задача изобретения решается тем, что в способе получения пищевой добавки, включающем прессование жома топинамбура, сушку жома после прессования и измельчение высушенного жома, жом топинамбура перед сушкой обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180-300 Вт/дм3 в течение 30-90 секунд, сушку обработанного жома топинамбура проводят при температуре 60-70°C, а перед измельчением высушенный жом охлаждают до температуры 20-25°C, при этом измельчение проводят до размера частиц не более 0,05 мм.
Авторами изобретения экспериментально специальными опытами с применением метода ядерно-магнитной релаксации установлено, что обработка жома топинамбура в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180-300 Вт/дм3 в течение 30-60 секунд перед сушкой позволяет перевести до 20% связанной влаги в жоме топинамбура в свободную влагу, что обеспечивает снижение температуры последующей сушки, а это, в свою очередь, позволяет в максимальной степени сохранить в процессе сушки термонестабильные макро — и микронутриенты, содержащиеся в жоме топинамбура, а также обеспечить высокую водопоглощающую и водоудерживающую способности.
Примеры осуществления способа приведены ниже.
Пример 1. Жом топинамбура после водной экстракции подают в шнековый пресс для удаления воды с целью достижения остаточной влажности не более 15%. Затем отпрессованный жом топинамбура обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180 Вт/дм3 в течение 90 секунд и сушат при температуре 60°C до влажности не более 8%. Высушенный продукт охлаждают до температуры 20°C, измельчают на дезинтеграторе до размера частиц не более 0,05 мм и упаковывают в мешки из полимерного материала массой нетто 5, 10 или 15 кг.
Пример 2. Жом топинамбура после водной экстракции подают в шнековый пресс для удаления воды с целью достижения остаточной влажности не более 15%. Затем отпрессованный жом топинамбура обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 300 Вт/дм3 в течение 30 секунд и сушат при температуре 70°C до влажности не более 8%. Высушенный продукт охлаждают до температуры 25°C, измельчают на дезинтеграторе до размера частиц не более 0,05 мм и упаковывают в мешки из полимерного материала массой нетто 5, 10 или 15 кг.
В таблице приведены данные, характеризующие пищевую добавку, полученную по известному и заявляемому способам.
Из приведенных в таблице данных видно, что пищевая добавка, полученная по заявляемому способу, содержит в своем составе в большем количестве физиологически ценные макронутриенты — пищевые волокна, в том числе пектиновые вещества, инулин, а также микронутриенты: витамины С и P-активные вещества, по сравнению с пищевой добавкой, полученной по известному способу.
Кроме этого пищевая добавка, полученная по заявляемому способу, проявляет более эффективно технологические свойства: водопоглощающая и водоудерживающая способности значительно выше по сравнению с этими свойствами пищевой добавки, полученной по известному способу.
Способ получения пищевой добавки, включающий прессование жома топинамбура, сушку жома после прессования и измельчение высушенного жома, отличающийся тем, что жом топинамбура перед сушкой обрабатывают в электромагнитном поле сверхвысоких частот с частотой 2450 МГц при удельной мощности 180-300 Вт/дм в течение 30-90 секунд, сушку обработанного жома топинамбура проводят при температуре 60-70°C, а перед измельчением высушенный жом охлаждают до температуры 20-25°C, при этом измельчение проводят до размера частиц не более 0,05 мм.