Какой угол называется внешним свойства внешнего угла

Основные определения

Прежде чем рассмотреть определение внешнего угла треугольника, напомним несколько основных определений из начального курса геометрии, а именно:

  • угла и треугольника;
  • смежных углов;
  • параллельных прямых.

Угол и треугольник являются геометрическими фигурами. Угол состоит из точки (вершины) и двух лучей (сторон угла), которые исходят из данной точки. Треугольник представляет собой три точки (вершины), соединённые отрезками (сторонами). Треугольник имеет три угла.

Определение 1

Смежными называют два угла, имеющие одну общую сторону, а другие две стороны являются продолжениями друг друга.

На рисунке ниже смежными углами являются углы $ADB$ и $BDC$. $angle ADB + angle BDC = angle ADC = 180^{circ}$.

Рисунок 1. Смежные углы. Автор24 — интернет-биржа студенческих работ

Параллельными называются две непересекающиеся прямые на одной плоскости. Секущей по отношению к двум прямым называется прямая, которая пересекает две прямые в двух точках. Если две прямые параллельны, то в случае пересечения пары этих прямых секущей, получившиеся в результате этого действа накрест лежащие углы равны, а сумма односторонних углов равна $180^{circ}$.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Теорема о сумме углов треугольника

Понятие внешнего угла треугольника встречается в теореме о сумме углов треугольника, которая звучит следующим образом:

Теорема 1

Сумма углов треугольника равна $180^{circ}$.

Приведём её доказательство.

Пусть дан произвольный $triangle ABC$. Нужно доказать, что $angle A + angle B + angle C=180^{circ}$.

Рисунок 2. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Проведём прямую $b$ через вершину $B$, которая будет параллельна стороне $AC$.

Рисунок 3. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Видим, что углы 1 и 5 — накрест лежащие углы при пересечении параллельных прямых $b$ и $AC$ секущей $AB$. Углы 3 и 4 также являются накрест лежащими углами при пересечении тех же параллельных прмяых секущей $BC$. Делаем вывод, что: $angle 5 = angle 1, angle 4 = angle 3$.

Очевидно, глядя на рисунок, что сумма углов 2, 4 и 5 равна $180^{circ}$. Отсюда следует, что $angle 1 +angle 2 +angle 3 = 180^{circ}$ или $angle A + angle B + angle C=180^{circ}$. Ч.т.д.

Внешний угол треугольника

В доказательстве теоремы о сумме углов треугольника есть два примера внешнего угла треугольника. Это углы 4 и 5. Дадим определение:

Определение 2

Внешний угол треугольника — это угол, являющийся смежным с каким-нибудь углом данного треугольника.

Имеем теорему:

Теорема 2

Внешний угол треугольника равен сумме двух углов данного треугольника, не являющихся смежным с внешним углом.

Докажем эту теорему.

Рассмотрим следующий рисунок:

Рисунок 4. Внешний угол треугольника. Автор24 — интернет-биржа студенческих работ

Мы видим, что угол 4 является внешним углом, смежным с 2 углом треугольника. Очевидно, что $angle 4 +angle 2 = 180^{circ}$. По теореме о сумме углов:

$(angle 1 +angle 3)+angle 2=180^{circ}$. Отсюда следует, $angle 4 = angle 1 +angle 3$. Ч.т.д.

Рассмотрим пример задачи на данную тему.

Пример 1

Задача. $triangle ABC$ — равнобедренный. $AC$ — основание этого треугольника. $AC$=37 см, внешний угол при $B$ равняется $60^{circ}$. Нужно найти расстояние от точки $C$ до прямой $AB$.

Решение. Сделаем рисунок:

Рисунок 5. Треугольник. Автор24 — интернет-биржа студенческих работ

На рисунке прямая, обозначающая расстояние от точки $C$ до прямой $AB$ обозначена как $CD$. В математике такое расстояние называют высотой. По определению высоты треугольника, прямая высоты перпендикулярна той стороне, на которую опущена. То есть $angle ADC = 90^{circ}$.

По теореме о внешнем угле треугольника находим $angle B$: $angle B=180-60=120^{circ}$. По теореме о сумме углов треугольника получается, что $angle A + angle C = 180-120=60$. Так как треугольник равнобедренный, углы у основания равны по $30^{circ}$.

Рассмотрим $triangle ADC$. Из вышеуказанного следует, что он прямоугольный. Из свойства прямоугольных треугольников известно, что катет такого треугольника, который лежит против угла $30^{circ}$, равен половине гипотенузы. В нашем случае, $СD$ является катетом против угла $30^{circ}$, а $AC$ — гипотенуза. Поэтому справедливо утверждать, что $CD=37/2=18,5$ см.

Ответ: 18,5 см.

Таким образом, в данной статье мы получили полное представление о том, что такое внешний угол треугольника и разобрали сопутствующие теоремы.

Источник

Тема: «Внешние углы треугольника»

Тип урока: Ознакомление с новым материалом

Цели:

  1. Познакомить учащихся с понятием внешнего угла

  2. Доказать теорему о внешнем угле треугольника

  3. Развить способность применять доказанную теорему в решении задач.

Ход урока

І . Устный опрос

  1. Сформулировать теорему о сумме углов треугольника.

  2. Найдите неизвестный угол треугольника, если у него два угла равны 50 ° и 30°.

50 °

30°

  1. Найдите угол между боковыми сторонами равнобедренного треугольника, если угол при основании у него равен 35°.

35°

  1. Найдите угол при основании равнобедренного треугольника, если угол между боковыми сторонами 80°.

80°

  1. К

    B

    акие углы изображены на рисунке?

C

D

A

  1. Какие углы называются смежными?

  2. Каким свойством обладают смежные углы?

  3. Найдите углы смежные с углами в 30°, 45°, 60°, 90°

  4. Назовите смежные углы

c

b

a

a1

  1. Являются ли смежными AOB и DOC?

A

О

B

C

  1. Найдите пары смежных углов на рисунке.

B

A

D

E

C

  1. C какими углами не смежные DAB, EAC?

І

B

І. Изучение нового материала

A

C

D

— Постройте угол смежный с углом С.

— Угол, который вы построили, называется внешним углом ΔABC при вершине С.

Определение:

Внешним углом треугольника при данной вершине называется угол смежный с углом треугольника при этой вершине.

— Как вы думаете, можно ли еще построить внешний угол при вершине C?

— Что вы можете сказать о величине данных углов?

— Сколько всего внешних углов имеет треугольник?

Внешние углы треугольника обладают свойством, которые мы сегодня докажем.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

— Откройте учебник на стр. 66 и прочитайте внимательно.

— Где условие, где заключение?

— Что дано, что требовалось доказать?

Дано:

4 – внешний угол треугольника смежный с 3.

Доказать: 4 = 1+2

1

2

3

4

Доказательство:

— Чему равна сумма углов треугольника?

1. 1 + 2+3 = 180°

— Как найти сумму углов 1 и 2?

2. 1+ 2 = 180° — 3

— Как можно найти угол 4?

3. 4 = 180° — 3

— Что мы получим?

4. 4 = 1 + 2

ч.т.д.

— Какую теорему мы доказали?

ІІІ. Закрепление нового материала.

  1. Пусть 4 = 70°. Чему равна сумма углов 1 и 2?

  2. Сумма углов 1 и 2 равна 140°. Чему равен внешний угол не смежный с данными углами?

Задача 1. Внешний угол ABC при вершине C равен 120°. Найдите градусные меры углов треугольника, не смежные с ним, если известно, что один из них в 2 раза больше другого.

(с ребятами читаем еще раз условие задачи).

Д

B

ано:

BCD = 120°

B > A в 2 раза

Н

A

D

айдите: A и B

C

Решение:

Пусть A — х ° , тогда B = 2х° .

х +2х = 120

3х = 120

х =40 A = 40 °

B= 2 ·40° = 80°

Ответ: A = 40 °, B = 80°.

Задача 2. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине B равен 108°. Найдите углы треугольника.

D

Дано:

A

B

C

108°

Δ ABC- равнобедренный

AC – основание, DBC = 108°

Найдите: A, B, C

Решение:

  1. DBC = A + C = 108° — по свойству внешних углов

  2. A = C = 108° : 2 = 54° — по свойству равнобедренного треугольника

  3. B = 180° — 108° = 72° — по свойству смежных углов

Ответ: A = 54°, С = 54°, B = 72°.

Итог:

— Какой угол называется внешним?

— Каким свойством обладает внешний угол треугольника?

Дополнительные задания:

  1. Найдите углы равнобедренного треугольника, если внешний угол при основании равен 112°.

Ответ: 68°, 68°, 44°.

  1. Найдите градусные меры внешних углов равностороннего треугольника.

Ответ: 120°, 120°, 120°.

  1. Найдите внешний угол при основании равнобедренного треугольника с углом в 45°.

Ответ: 135°.

B

227 б)

A

C

D

Дано:

Δ ABC- равнобедренный

С < BCD

Найти углы Δ ABC

Решение:

Пусть С = х °, BCD = 3х°

Т.к. углы смежные и в сумме составляют 180°, то составим уравнение:

х + 3х = 180

4х = 180

х = 45

A = C = 45°

B = 90°.

Ответ: B = 90°.

ІV. Домашнее задание

п. 30, стр.66

B 1-2 стр.84

№233, №234, №235.

Источник

Ðåçóëüòàò ñëîæåíèÿ äâóõ âíóòðåííèõ óãëîâ òðåóãîëüíèêà áóäåò ðàâíÿòüñÿ âíåøíåìó óãëó, íå ñìåæíîìó ñ íèìè.

Òðåóãîëüíèê. Ñâîéñòâî âíåøíåãî óãëà òðåóãîëüíèêà.

Ïðîàíàëèçèðóåì óãëû ïðîèçâîëüíîãî òðåóãîëüíèêà ÀÂÑ.

Êàê èçâåñòíî, ñóììà âñåõ óãëîâ òðåóãîëüíèêà 2 d, èç ýòîãî ïîëó÷àåì òîæäåñòâî / 1 + / 2 = 2d — / 3, íî è / ÂÑD, âíåøíèé óãîë ýòîãî òðåóãîëüíèêà, íå ñìåæíûé ñ / 1 è / 2, â ñâîþ î÷åðåäü ìîæíî âûðàçèòü òîæäåñòâîì 2d — / 3.

Èç ýòîãî ìîæíî ñäåëàòü âûâîä:

/ 1 + / 2 = 2d — / 3;

/ ÂÑD = 2d — / 3.

Çíà÷èò âåðíûì áóäåò / 1 + / 2 = / ÂÑD.

Óñòàíîâëåííîå ñâîéñòâî âíåøíåãî óãëà òðåóãîëüíèêà êîíêðåòèçèðóåò ôîðìóëèðîâêó òåîðåìû î âíåøíåì óãëå òðåóãîëüíèêà, â êîòîðîé îáîñíîâûâàëîñü ëèøü, ÷òî âíåøíèé óãîë òðåóãîëüíèêà áîëüøå âñÿêîãî âíóòðåííåãî óãëà òðåóãîëüíèêà, íå ñìåæíîãî ñ íèì; òåïåðü æå ïîäòâåðæäåíî, ÷òî âíåøíèé óãîë ðàâíÿåòñÿ ñóììå îáîèõ âíóòðåííèõ óãëîâ, íå ñìåæíûõ ñ íèì.

  

Ðàñ÷åò òðåóãîëüíèêà îíëàéí

Ðàñ÷åò âñåõ óãëîâ, ñòîðîí è ïëîùàäè ïî èçâåñòíûì óãëàì è ñòîðîíàì òðåóãîëüíèêà, ÷åðòåæ òðåóãîëüíèêà
Ðàñ÷åò òðåóãîëüíèêà îíëàéí
  

Êàëüêóëÿòîðû ïî ãåîìåòðèè

Ïîìîùü â ðåøåíèè çàäà÷ ïî ãåîìåòðèè, ó÷åáíèê îíëàéí (âñå êàëüêóëÿòîðû ïî ãåîìåòðèè).
Êàëüêóëÿòîðû ïî ãåîìåòðèè
  

Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ãåîìåòðèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Òðåóãîëüíèê

Òðåóãîëüíèê, ñòîðîíû, óãëû, âûñîòà òðåóãîëüíèêà, ìåäèàíû, áèññåêòðèñû. Ïðÿìîóãîëüíûé òðåóãîëüíèê, ïëîùàäü òðåóãîëüíèêà.
Òðåóãîëüíèê
  

Òèïû òðåóãîëüíèêîâ.

Íåêîòîðûé òðåóãîëüíèê, â êîòîðîì âñå ñòîðîíû íå îäèíàêîâîé äëèíû, ïðèíÿòî íàçûâàòü ðàçíîñòîðîííèìè.
Òèïû òðåóãîëüíèêîâ.

Источник

Тупоугольный треугольник, элементы, свойства, признаки и формулы.

Какой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего углаКакой угол называется внешним свойства внешнего угла

Тупоугольный треугольник – это треугольник, у которого один угол тупой.

Тупоугольный треугольник (понятие и определение)

Элементы тупоугольного треугольника

Свойства тупоугольного треугольника

Формулы тупоугольного треугольника

Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник

Тупоугольный треугольник (понятие и определение): 

Тупоугольный треугольник – это треугольник, у которого один угол тупой, т.е. один из его углов лежит в пределах между 90° и 180°.

Тупоугольный треугольник – это треугольник, у которого один угол тупой, а два других – острые. В свою очередь, тупой угол – это угол, градусная мера которого составляет 90° до 180°, а острый угол – это угол, градусная мера которого составляет менее 90 градусов

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 1. Тупоугольный треугольник

BАC– тупой угол треугольника,

АВС, BСA – острые углы треугольника

По определению, тупоугольным треугольником не может быть правильный (равносторонний) треугольник, т.к. у него каждый угол составляет 60°.

Какой угол называется внешним свойства внешнего угла

Рис. 2. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника,

АВС = BАC = BСA = 60° – углы треугольника 

По определению, тупоугольным треугольником не может быть прямоугольный треугольник , т.к. у него один угол составляет 90° и сумма двух других углов также составляет 90°.

Рис. 8. Прямоугольный треугольник

Рис. 3. Прямоугольный треугольник

Тупоугольный треугольник также может быть одновременно равнобедренным треугольником. Но не всякий равнобедренный треугольник тупой.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 4. Равнобедренный треугольник

АВ = AС – боковые стороны, BС – основание,

ВАС – вершинный угол, АBC и BСA – углы при основании

Хотя в тупоугольном треугольнике тупой угол больше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.

Элементы тупоугольного треугольника:

Кроме сторон и углов у тупоугольного треугольника также имеются внешние углы. Внешний угол это угол, смежный с внутренним углом треугольника. У любого треугольника, в т.ч. тупоугольного, 6 внешних углов, по 2 на каждый внутренний. Внешний угол тупого угла тупоугольного треугольника всегда будет острым углом. Внешний угол острого угла тупоугольного треугольника всегда будет тупым углом.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 5. Тупоугольный треугольник и внешний угол

ВAD – острый угол

Медиана тупоугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 6. Тупоугольный треугольник и медиана тупоугольного треугольника

MA – медиана тупоугольного треугольника

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 7. Тупоугольный треугольник и высота тупоугольного треугольника

MС – высота тупоугольного треугольника

Высота тупоугольного треугольника может лежать за пределами треугольника.

Биссектриса в тупоугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы  пересекаются в точке, которая является центром вписанной окружности.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 8. Тупоугольный треугольник и биссектриса угла тупоугольного треугольника

MA – биссектриса тупого угла тупоугольного треугольника

Кроме того, биссектриса тупоугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Свойства тупоугольного треугольника:

Свойства тупоугольного треугольника аналогичны свойствам обычного треугольника:

1. Против большей стороны лежит больший угол, и наоборот.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 9. Тупоугольный треугольник

2. Против равных сторон лежат равные углы, и наоборот.

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Рис. 10. Тупоугольный треугольник с равными боковыми сторонами

АВ = АС

3. Сумма углов тупоугольного треугольника равна 180°.

4. Любая сторона тупоугольного треугольника меньше суммы двух других сторон и больше их разности:

    • a < b + c;
    • a > b – c;
    • b < a + c,
    • b > a – c;
    • c < a + b;
    • c > a – b.

Квадрат

Овал

Остроугольный треугольник

Полукруг

Прямой угол

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Ромб

Трапеция

Тупой угол

Тупоугольный треугольник

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
2 257

Источник

Источник

Читайте также:  Какие свойства относятся к эстетическим свойствам