Какой тип шкал имеет все свойства шкал отношений

Какой тип шкал имеет все свойства шкал отношений thumbnail

Шкала измерения в статистике — это способ представления переменных (признаков, атрибутов) и их группировки в различные категории. Она определяет характер значений, присвоенных переменным в наборе данных.

Шкала измерений формируется на основе двух ключевых понятий — измерение и масштабирование. Измерение — это процесс записи наблюдений, собранных в рамках исследования. Масштабирование — присвоение объектам числовых значений или определённой семантики. Эти два понятия, объединенные вместе, образуют связи между объектами и наблюдениями.

Шкала измерения используется для определения и описания переменных в наборах данных. Она определяет методы, которые могут быть использованы для их анализа. В зависимости от типа анализируемых данных определяется тип шкалы измерения. Выделяют 4 основных вида шкал: номинальная, порядковая, интервальная и шкала отношений.

Шкалы измерения используются для представления как качественных, так и количественных данных. Номинальная и порядковая шкалы используются для измерения качественных данных, в то время как интервальная и шкала отношений используются для измерения количественных.

Основными свойствами шкал измерений являются:

  1. Идентифицируемость — возможность присвоения числовых значений каждой переменной в наборе данных. Например, в анкете запрашивается пол респондента — «Мужчина» и «Женщина». Для этих двух значений могут быть определены идентифицирующие значения — 1 и 2 соответственно. К таким значениям не могут быть применены арифметические операции, потому что они служат только для идентификации, а не описания.
  2. Величина (магнитуда) — это размерность шкалы измерения, где значения могут быть упорядочены от наименьшего к наибольшему. Например, место в соревновании распределяется от 1-го, 2-го, 3-го до наименьшего.
  3. Равенство интервалов — означают, что шкала имеет стандартизированный порядок, т.е. разность между двумя любыми соседними уровнями шкалы одинакова. Упорядоченность шкалы не гарантирует равенство интервалов. Например, в примере с местами в соревновании, каждая позиция имеет одинаковую разницу интервалов равную 1, но при этом 2-й участник может финишировать на 20 секунд позже, чем первый, а третий на 40 секунд позже, чем второй.
  4. Абсолютный ноль — естественное и однозначное присутствие нулевой точки, изменение которой невозможно. Данная точка характеризует отсутствие измеряемого признака. Например, 0 градусов по Кельвину является абсолютным нулем на шкале, а 0 градусов по Цельсию — нет, т.к. за него принято одно из произвольно взятых физических явлений — температура плавления льда.

Типы шкал

Зная различные уровни измерений данных, можно выбрать наилучший метод анализа.

  1. Номинальная шкала (категориальная, наименований) — это шкала измерения, которая используется для идентификации. Она является самой «слабой» из четырех видов шкал в смысле возможности обработки данных. Она присваивает номера атрибутам для удобства идентификации, но может использоваться только как метка. Единственный вид статистического анализа, который можно выполнить с использованием номинальной шкалы, это вычисление процентных долей и частот. Данные в номинальной шкале можно проанализировать графически с помощью гистограммы и круговой диаграммы. Например, если измерить атрибут «Товар» в номинальной шкале, то она будет выглядеть так: 1 — мороженное; 2 — соки; 4 — выпечка. При этом значения шкалы не определяют какого-либо приоритета между товарами, а просто идентифицируют их. Очевидно, что такая шкала может использоваться только для самого просто анализа.
  2. Порядковая шкала (ординальная, ранговая) — предполагает ранжирование (упорядочивание) значений переменной в зависимости от масштабирования. Атрибуты в порядковой шкале обычно располагаются в порядке возрастания или убывания. Порядковая шкала может быть использована в исследованиях рынка, рекламы и опросов удовлетворенности клиентов. Она использует квалификаторы, такие как «очень», «высоко», «больше», «меньше» и т. д. В порядковой шкале можно использовать для статистического анализа такие статистики как медиана, но не среднее значение. Существуют и другие виды анализа, которые могут быть проведены с использованием порядковой шкалы. Например, компания-разработчик ПО может провести опрос пользователей для оценки нового приложения в шкале: «Отлично», «Очень хорошо», «Хорошо», «Плохо», «Очень плохо». Атрибуты в этом примере перечислены в порядке убывания.
  3. Интервальная шкала (разностей) — это шкала, в которой уровни упорядочены, а интервалы между ними равны. Её можно рассматривать как расширение порядковой шкалы. Основным отличием является свойство равных интервалов. Интервальная шкала не только позволяет однозначно определить, какое значение больше (меньше), но и на сколько. Кроме того, в отличие от порядковой и номинальной шкал, в интервальной могут выполняться арифметические операции. Типичным примером является измерение температуры по шкале Фаренгейта. Интервальную шкалу можно использовать при расчете среднего значения, медианы, моды, стандартного отклонения и других статистик.
  4. Шкала отношений (абсолютная) является «наивысшим» уровнем представления данных. Она может рассматриваться как расширение интервальной шкалы, и следовательно, удовлетворяет четырем свойствам шкалы измерения: идентифицируемостью, величиной, равноинтервальностью и наличием абсолютного нуля. Примерами шкал отношения являются длина, вес, время и т. д. В исследованиях рынка примерами шкалы отношений являются цена, количество клиентов, суммы продаж и т. д. Она широко используется в маркетинге и рекламе. Шкала отношений совместима со всеми методами статистического анализа и может использовать как показатели центральной тенденции (среднее значение, медиана, мода и т. д.), так и разброса значения (дисперсии, размаха, стандартного отклонения и т. д.).

Сравнение типов шкал:

Свойства Тип шкалыНоминальнаяПорядковаяИнтервальнаяОтношений
Идентифицируемостьxxxx
Величина (магнитуда)xxx
Равенство интерваловxx
Абсолютный нольx

Кроме основных четырёх упомянутых типов, шкалы могут быть разделены на компаративные (сравнивающие) и некомпаративными (не сравнивающие). Компаративные шкалы позволяют устанавливать отношения сравнения между объектами (например, товар А продаётся в 5 раз чаще, чем товар Б). Иными словами, один объект оценивается путём прямого сравнения с другим. Некомпоративные шкалы позволяют оценивать объекты только по отдельности, без возможности сравнения с другими объектами.

Читайте также:  Какими свойствами обладает мед на кожу

Понимание концепции шкал измерений является необходимым условием для корректной обработки данных и проведения статистического анализа.

Источник

У этого термина существуют и другие значения, см. Шкала (значения).

Шкала (измерительная шкала) — это знаковая система, для которой задано отображение (операция измерения), ставящее в соответствие реальным объектам, ситуациям, событиям или процессам тот или иной элемент (значение) шкалы. Формально шкалой называют кортеж, <X, φ, Y>, где X — множество реальных объектов, ситуаций, событий или процессов, φ — отображение, Y — множество элементов (значений) знаковой системы[1][2].

Различные типы измерительных шкал широко используются в теоретической и практической человеческой деятельности, в науке и технике — в том числе во многих гуманитарных научных областях, таких как экономика, психометрия, социология и др.[3][4]для символьного (формального) представления объектов (событий), их свойств (характеристик) и взаимосвязей.

Типы шкал[править | править код]

Шкалы измерений классифицируются по типам измеряемых данных, которые определяют допустимые для данной шкалы отношения, в том числе те, что соответствуют математическим преобразованиям значений шкалы[2],[5]. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

Шкала наименований (номинальная, классификационная)
Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект. Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т. п. Такие признаки удовлетворяют аксиомам тождества:

  • Либо А = В, либо А ≠ В;
  • Если А = В, то В = А;
  • Если А = В и В = С, то А = С.

При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются[6] шкалы, используемые для классификации животных и растений.
С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию — проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа[6] — критерия согласия , критерия Крамера для проверки гипотезы о связи качественных признаков и др.
Порядковая шкала (или ранговая)
Включает отношения тождества и порядка. Объекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать, что больше круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между объектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.
Порядковые шкалы, используемые для представления свойств объектов, которые могут принимать крайние, противоположные значения, называются биполярными шкалами. К таким свойствам относятся, например, такие, как соответствие объекта некоторому назначению: от «полностью не соответствует», до «полностью соответствует», и различные степени частичного соответствия. При этом крайние значения шкалы назначаются крайним, противоположным значениям свойств, промежуточные используются для представления различной степени соответствия объекта назначению.
Интервальная шкала (она же Шкала разностей)
Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.
Начало отсчёта произвольно, единица измерения задана. Допустимые преобразования — сдвиги. Пример: измерение времени.
Абсолютная шкала (она же Шкала отношений)
это интервальная шкала, в которой присутствует дополнительное свойство — естественное и однозначное присутствие нулевой точки. Пример: число людей в аудитории. В шкале отношений действует отношение «во столько-то раз больше». Это единственная из четырёх шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки — сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения — Кельвин).

Из рассмотренных шкал первые две являются неметрическими, а остальные — метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.

Типы шкал и их свойства согласно классификации Стэнли Смита Стивенса

Номинальная
шкала

Порядковая
шкала

Интервальная
шкала

шкала
Отношений

Логические/
математические
операции

×
÷

+

<
>

=

Примеры:
Дихотомические и
недихотомические

переменные
Дихотомические:

Пол
(мужской vs. женский)

Недихотомические:

Национальность
(американец/китаец/ и т.д)

Дихотомические:

Состояние здоровья
(здоровый vs. больной),

Красота
(красивый vs.уродливый)

Недихотомические:

Мнение
(‘полностью согласен’/
‘скорее согласен’/
‘скорее несогласен’/
‘полностью несогласен’)

Дата
(с 1457 до н. э.
до 2013 н.э)

Широта
(от +90° до −90°)

Температура
(от 10 °C до 20 °C)

Возраст
(от 0 до 99 лет)
Мера центральной тенденции

Мода

Медиана

Среднее арифметическое

Среднее геометрическое

Метрическая или
нет

Неметрическая (качественная)

Неметрическая (качественная)

Метрическая (количественная)

Метрическая (количественная)

Критика типологии Стивенса[править | править код]

Анализируя различные типы шкал Ф. Н. Ильясов приходит к выводу, что номинальная и интервальная шкала являются исследовательскими артефактами[7][прояснить].

Хотя типология Стивенса все ещё широко применима, она до сих пор является объектом критики теоретиков, в частности в случае с номинальной и порядковой шкалой.[8]

Основные моменты критики шкал Стивенсона:

  • Сведéние выбора только к тем статистическим методам, которые «демонстрируют инвариантность, подходящую для данного типа шкалы», представляется опасным для анализа данных практикой.
  • Его таксономия слишком строга, чтобы её возможно было применять для реальных данных.
  • Стивенсовские ограничения часто ведут к понижению уровня данных через их преобразование в ранги и последующее ненужное обращение к непараметрическим методам.
Читайте также:  Свойства сложения для каких чисел

Лорд критиковал аргументы Стивенса, показав, что выбор допустимых статистических тестов для некоторого набора данных не зависит от проблем репрезентации или единственности, а зависит от осмысленности.[9]

Бейкер, Хардик и Петринович, а также Боргатта и Борнштедт подчеркнули тот факт, что следование Стивенсовским ограничениям часто заставляет исследователей прибегать к ранговому упорядочению данных и тем самым отказываться от использования параметрических тестов. К сожалению, их аргументация носила скорее ad hoc характер и завершалась предложением использовать стандартные параметрические процедуры вместо того, чтобы связываться с проблемой робастности.[10][11]

Гуттман в более общем смысле доказывал, что статистическая интерпретация данных зависит от того, какой вопрос обращён к данным и какое доказательство мы готовы принять в ответ на этот вопрос. Он определил это доказательство в терминах функции потерь, выбранной для проверки качества модели.[12]

Джон Тьюки также критиковал стивенсовские ограничения как опасные для хорошего статистического анализа. Подобно Лорду и Гуттману, Тьюки отметил важность смысла данных при определении и шкалы, и подходящего способа анализа. Поскольку шкальные типы Стивенса абсолютны, в ситуации когда, например, данные нельзя считать полностью интервальными, их следует понизить в ранге до ординальных.

Даже сам Стивенс оговаривался, замечая: «Фактически большая часть шкал, широко и эффективно применяемых психологами, — это шкалы порядка. Обычные статистики, включая средние и стандартные отклонения, при строгом подходе не должны использоваться при работе с этим шкалами, однако такому неправомочному использованию может быть дано известное прагматическое оправдание: во многих случаях оно приводит к плодотворным результатам»

Дункан (1986) возразил против употребления слова «измерение» в описании номинальной шкалы, но Стивенс (1975) после дал собственное определения «измерения» которое звучит, как «приписывание признака по какому-либо правилу. Единственное правило, которое не может быть использовано для этих целей — случайность приписывания». Однако, так называемое «номинальное измерение» включает оценочное суждение исследователя, а возможные трансформации этого измерения бесконечны. Это одно из замечаний, сделанных Лордом в 1953 году в сатиристической статье On the Statistical Treatment of Football Numbers[13]

Использование «среднего» в качестве меры центральной тенденции для порядкового типа по-прежнему спорно среди тех, кто принимает типологию Стивенса. Несмотря на это, многие учёные, занимающиеся поведенческими исследованиями, используют среднее для порядковых данных. Обычно это оправдывают тем, что порядковый тип в поведенческих науках находится где-то между истинным порядковым и интервальным типами. Хотя разница интервалов между двумя порядковыми разрядами не является постоянной, она зачастую имеет тот же порядок.

К примеру, применение измерительных моделей в образовательном контексте показывает, что общие оценки имеют довольно линейную зависимость с измерениями в пределах диапазона оценки. Таким образом, некоторые утверждают, что пока разница интервалов между порядковыми разрядами не очень большая, статистические данные интервальных шкал (к примеру «средняя») может иметь значимый результат для порядковых шкал. Программное обеспечение для статистического анализа (например SPSS) требует от пользователя указание соответствующего класса измерений для каждой переменной. Это гарантирует, что непреднамеренные ошибки пользователя не приведут к бессмысленному анализу (пример: анализ корреляции с номинальной переменной).

Терстоун добился прогресса в разработке обоснования для получения интервального типа, основанного на законе сравнительного суждения. Общим применением закона является аналитический процесс иерархии. Геогр Раш (англ.) достиг дальнейшего прогресса, разработав вероятностную модель Rasch model (англ.), которая даёт теоретическую основу и обоснование для получения интервальных измерений из подсчёта наблюдений (например общее количество баллов по оценкам).

Несмотря на всю критику, в широком диапазоне ситуаций опыт показывает, что применение запрещённых статистик к данным приводит к научно значимым результатам, важным при принятии решений и ценным для дальнейших исследований.

Другие предложенные типологии[править | править код]

Существуют иные типологии, отличные от Стивенса. К примеру: Mostller
Mosteller
и Tukey (1977), Nelder (1990) создали описание непрерывного отсчёта, непрерывных отношений и категориальных моделях данных. См. также: Chrisman (1998), van den Berg (1991).

Типология Мостеллера и Тьюки (1977)[править | править код]

Mosteller and Tukey заметили, что 4 уровня недостаточно и предложили следующее деление:[14]

  1. Имена
  2. Оценочные суждения (e.g. новичок, второкурсник etc.)
  3. Оценки ограниченные 0 и 1
  4. Счётные (положительные целые числа)
  5. Натуральные (положительные вещественные числа)
  6. Сбалансированные (любые вещественные числа)

Например, проценты (вариант фракций в терминах Мостлера-Тьюки) не подходят к теории Стивенса, так как не существует полностью допустимых трансформаций.[8]

Типология Крисмана (1998)[править | править код]

Николас Крисман предложил расширенный поиск уровней измерения для учёта разных измерений, которые не обязательно соответствуют традиционным представлениям уровней измерения. Измерения, связанные с диапазоном и повторением (к примеру радиальные градусы по кругу, часы и тд), градуированные категории членства и другие типа измерений, не соответствуют оригинальной работе Стивена, приводящие к внедрению шести новых уровней измерения к существующим десяти:

  1. Номинальная
  2. Градуированное членство
  3. Порядковая
  4. Интервальная
  5. Интервальная логарифмическая
  6. Экстенсивное отношение
  7. Циклическое отношение
  8. Производное отношение
  9. Счётная
  10. Абсолютная

Расширенные уровни измерений редко используются вне академической географии.[15]

Типы шкал и «операционная теория измерения» Стивенса[править | править код]

Теория типов шкал это своеобразная «интеллектуальная служанка» операционной теории измерения Стивенса, которая стала окончательной в психологии и поведенческих науках, несмотря на критику Мичелла за противоречивость с измерениями в естественных науках (Michell, 1999).
На самом деле, операционная теория измерения была реакцией на выводы комитета, созданного British Association for the Advancement of Science (англ.) в 1932 для изучения возможности подлинных научных измерений в психологических и поведенческих науках. Этот комитет, который стал известен как «Комитет Фергюсона», опубликовал окончательный отчёт (Ferguson, et al., 1940, p. 245), в котором шкала Стивенса сон (Stevens & Davis, 1938) была объектом критики.

Читайте также:  Какими свойствами обладают раковины моллюсков ответ

Значит, если шкала сонов Стивенса действительно измеряет интенсивность ощущений аудитории, должно быть произведено доказательство того, что эти ощущения являются количественными атрибутами. Необходимым доказательством было присутствие «аддитивных структур» — концепт, разработанный немецким математиком Отто Холдером (Hölder, 1901). В условиях доминации физика и теоретика измерений Нормана Роберта Кампбелла (англ.) в обсуждении фергюсонского комитета, было постановлено, что измерения в социальных науках невозможны из-за отсутствия операции конкатенации. Впоследствии это решение было признано неверным после разработки теории совместных измерений Дебрю, а также независимо Люсом и Тьюки. Однако Стивенс хотел не введения дополнительных экспериментов для обнаружения аддитивных структур, а признания решения фергюсонского комитета полностью недействительным путём предложения новой теории измерений.

Огромное влияние на Стивенса оказали идеи другого гарвардского академика, лауреата нобелевской премии, физика Перси Бриджмена (1927), чью доктрину «Операционизм» Стивенс использовал для определения термина «измерение». К примеру, в определении Стивенса используется рулетка, которая определяет длину (объект измерения) как измеримую (следовательно количественную). Критики операционализма возражают, что он смешивает отношения между двумя объектами или событиями для свойств одного из объектов или событий (Hardcastle, 1995; Michell, 1999; Moyer, 1981a, b; Rogers, 1989).

Канадский исследователь измерительных теорий William Rozeboom (1966) был одним из первых критиков, резко высказавшихся против теории типов шкал Стивенса

Тип переменной зависит от контекста[править | править код]

Ещё одна проблема может заключаться в том, что одна и та же переменная может иметь разные типы шкал в зависимости от способа её измерения и целей анализа. Например, цвет волос обычно считается номинальной переменной, так как не имеет определённого порядка.[16] Тем не менее, расположить цвета в определённом порядке возможно несколькими способами, в том числе и по оттенкам, с помощью колориметрии.

Использование в психометрии[править | править код]

Используя различные шкалы, можно производить различные психологические измерения[17]. Самые первые методы психологических измерений были разработаны в психофизике. Основной задачей психофизиков являлось то, каким образом определить, как соотносятся физические параметры стимуляции и соответствующие им субъективные оценки ощущений. Зная эту связь, можно понять, какое ощущение соответствует тому или иному признаку. Психофизическая функция устанавливает связь между числовым значением шкалы физического измерения стимула и числовым значением психологической или субъективной реакцией на этот стимул.

Некоторые распространённые шкалы[править | править код]

  • Температурные шкалы разных стран и времён (Цельсия, Фаренгейта, Кельвина и др.)
  • Шкала Рихтера
  • Шкала Бофорта скорости ветра
  • Шкала Мооса — шкала твёрдости минералов
  • Цветовая палитра, Атлас цветов

См. также[править | править код]

  • Мира (оптика)
  • Статистические методы
  • Логарифмический масштаб

Примечания[править | править код]

  1. ↑ Журавлев Ю.И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
  2. 1 2 Анфилатов В. С., Емельянов А. А., Кукушкин А. А. Системный анализ в управлении. — М. Финансы и статистика, 2002. — 368 с.
  3. ↑ Экономика и менеджмент — Высокие статистические технологии
  4. ↑ Статистические методы — Высокие статистические технологии
  5. ↑ Перегудов Ф. И., Тарасевич Ф. П. Введение в системный анализ. — М.: Высшая школа, 1989. — 367 с.
  6. 1 2 Бахрушин В.Є. Методи аналізу даних. — Запоріжжя, КПУ, 2011
  7. ↑ Ильясов Ф. Н. Шкалы и специфика социологического измерения // Мониторинг общественного мнения: экономические и социальные перемены. 2014. № 1. С. 3-16.
  8. 1 2 Velleman, Paul F.; Wilkinson, Leland. Nominal, ordinal, interval, and ratio typologies are misleading (англ.) // The American Statistician (англ.)русск. : journal. — American Statistical Association, 1993. — Vol. 47. — P. 65—72. — doi:10.2307/2684788.
  9. ↑ Scaling : a sourcebook for behavioral scientists. — AldineTransaction, [2007]. — ISBN 9780202361758.
  10. Bela O. Baker, Curtis D. Hardyck, Lewis F. Petrinovich. Weak Measurements vs. Strong Statistics: An Empirical Critique of S. S. Stevens’ Proscriptions nn Statistics (англ.) // Educational and Psychological Measurement. — 1966-07-01. — Vol. 26, iss. 2. — P. 291—309. — ISSN 0013-1644. — doi:10.1177/001316446602600204.
  11. Edgar F. Borgatta, George W. Bohrnstedt. Level of Measurement: Once Over Again (англ.) // Sociological Methods & Research. — 1980-11-01. — Vol. 9, iss. 2. — P. 147—160. — ISSN 0049-1241. — doi:10.1177/004912418000900202.
  12. Louis Guttman. What is Not What in Statistics // Journal of the Royal Statistical Society. Series D (The Statistician). — 1977. — Т. 26, вып. 2. — С. 81—107. — doi:10.2307/2987957.
  13. Lord, Frederic M. On the Statistical Treatment of Football Numbers (англ.) // American Psychologist (англ.)русск. : journal. — 1953. — December (vol. 8). — P. 750—751. — doi:10.1037/h0063675.
  14. Mosteller, Frederick. Data analysis and regression : a second course in statistics (англ.). — Reading, Mass: Addison-Wesley Pub. Co, 1977. — ISBN 978-0201048544.
  15. Wolman, Abel G. Measurement and meaningfulness in conservation science (англ.) // Conservation biology : journal. — 2006.
  16. ↑ What is the difference between categorical, ordinal and interval variables?. Institute for Digital Research and Education. University of California, Los Angeles. Дата обращения 7 февраля 2016.
  17. ↑ Суппес П.[en], Зиннес Д. Основы теории измерений // Психологические измерения. М.: 1967. С. 9-110.

Литература[править | править код]

  1. Гусев А.Н., Измайлов Ч.А., Михалевская М.Б. Измерения в психологии. Общий психологический практикум. Серия «Практикум». Выпуск 2. М.:«Смысл». 1987, 280 с.
  2. Клигер С.Л., Косолапов М.С. , Толстова Ю.Н. Шкалирование при сборе и анализе социологической информации. М.: Наука. 1978 г. 107 с.

Источник