Какой продукт образуется в реакции присоединения водорода к пропилену

Какой продукт образуется в реакции присоединения водорода к пропилену thumbnail
Пропилен[1][2][3]
Систематическое
наименование
пропен
Традиционные названия пропилен, метилэтилен
Хим. формула C3H6
Состояние бесцветный газ
Молярная масса 42,081 г/моль
Плотность 0,5139 (при давлении насыщенного пара)
Поверхностное натяжение 17,1 (–50 °C); 6,8 (20 °C) мН/м Н/м
Динамическая вязкость жидкости: 0,370 (–100 °C); 0,128 (0 °C); 0,027 (90 °C) мПа·с;
газа: 6,40 (–50 °C); 7,81 (0 °C); 10,76 (100 °C) мкПа·с
Температура
 • плавления –187,65 °C
 • кипения –47,7 °C
 • вспышки –108 °C
 • самовоспламенения 410 °C
Пределы взрываемости в воздухе, 2,4—11 об. % %
Критическая точка  
 • температура 92[4] °C
 • давление 4,6 МПа[4]
Критическая плотность 181 см³/моль
Уд. теплоёмк. жидкости: 2,077 (–100 °С); 2,303 (0 °С); 3,475 (70 °С) кДж/(кг·К);
пара: 1,277 (–50 °С); 1,805 (100 °С) кДж/(кг·К) Дж/(кг·К)
Теплопроводность жидкости: 0,138 (–50 °С); 0,110 (0 °С); 0,077 (60 °С) Вт/(м·К);
пара: 0,0105 (–50 °С); 0,0256 (100 °С) Вт/(м·К) Вт/(м·K)
Энтальпия
 • образования –20,42 кДж/моль
 • плавления 3,00 кДж/моль
 • кипения 18,41 кДж/моль (–41 °С)
Давление пара 1,73 (–110 °С); 590 (0 °С); 4979 (100 °С) кПа
Растворимость
 • в воде 0,083 (0 °С); 0,041 (20 °С); 0,012 (50 °С); 0,002 (90 °С) мас. %
Диэлектрическая проницаемость 1,87 (20 °С); 1,44 (90 °С)
Дипольный момент 1,134·10–30 Кл·м
Рег. номер CAS 115-07-1
PubChem 8252
Рег. номер EINECS 204-062-1
SMILES

C=CC

InChI

1S/C3H6/c1-3-2/h3H,1H2,2H3

QQONPFPTGQHPMA-UHFFFAOYSA-N

RTECS UC6740000
ChEBI 16052
Номер ООН 1077
ChemSpider 7954
Предельная концентрация 100 мг/м³[4][5][6]
Краткие характер. опасности (H)

H220, H280

Меры предостор. (P)

P210, P377, P381, P410+P403

Сигнальное слово Опасно
Пиктограммы СГС
NFPA 704

4

1

1

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Пропиле́н (пропе́н, метилэтиле́н) СН2=СН-СН3 — органическое вещество, ненасыщенный углеводород из класса алкенов.

При нормальных условиях — бесцветный газ со слабым неприятным запахом.

Является важным продуктом промышленного синтеза и исходным сырьём для производства полипропилена и других органических соединений.

Химические свойства[править | править код]

Пропилен обладает широким набором химических свойств, которые определяются наличием двойной углерод-углеродной связи. Прежде всего, пропилен склонен к реакциям присоединения с разрывом π-связи. Эти превращения часто протекают по гетеролитическому типу и относятся к реакциями электрофильного присоединения[1][7].

Реакции присоединения[править | править код]

Пропилен вступает в реакцию с водородом в присутствии типичных катализаторов гидрирования, например никеля или платины[8].

Пропилен реагирует с галогеноводородами и серной кислотой, давая продукт присоединения по двойной связи (галогенпропан или изопропилсульфат). Пропилен является несимметричным алкеном, поэтому при присоединении этих реагентов он может давать два изомерных продукта, из которых (согласно правилу Марковникова) преобладает более замещённый галогенид или эфир[8].

По аналогичной схеме в присутствии кислотного катализатора пропилен реагирует с водой, давая изопропиловый спирт[8].

Пропилен быстро реагирует с галогенами, давая дигалогениды. Быстрее всего в реакцию вступает фтор (со взрывом), медленно реагирует иод. В присутствии посторонних нуклеофилов, кроме дигалогенидов, могут получаться также продукты сопряжённого присоединения[8].

Пропилен вступает в реакции оксосинтеза, образуя масляный и изомасляный альдегиды, а при повышенной температуре — соответствующие им спирты (бутиловый спирт и изобутиловый спирт)[9].

Реакции окисления[править | править код]

Для пропилена характерен ряд реакций окисления. При взаимодействии с раствором перманганата калия в слабощелочной среде он превращается в пропиленгликоль. Оксид хрома(VI) расщепляет алкены по двойной связи с образованием кетонов и карбоновых кислот. Аналогичному расщеплению пропилен подвергается в условиях реакции озонолиза[10].

При взаимодействии с надкислотами пропилен даёт оксид пропилена. Аналогичная реакция протекает и с кислородом воздуха в присутствии серебряного катализатора[10].

Реакции полимеризации[править | править код]

Пропилен вводят в радикальную полимеризацию, получая атактический полипропилен высокого давления, имеющий нерегулярное строение. Напротив, координационная полимеризация пропилена на катализаторах Циглера — Натты даёт изотактический полипропилен низкого давления, имеющий более высокую температуру размягчения[11].

Реакции по аллильному положению[править | править код]

Пропилен вступает в реакции по аллильному положению. При 500 °С он хлорируется, образуя аллилхлорид[12].

Лабораторное получение[править | править код]

В лабораторных условиях пропилен можно получить стандартными методами получения алкенов. Так, пропилен можно получить дегидратацией пропилового или изопропилового спирта нагреванием в присутствии серной кислоты[13].

Также пропилен можно получить из галогенидов путём отщепления галогеноводорода или из дигалогенидов путём отщепления галогена[13].

Пропин можно частично гидрировать до пропилена в присутствии отравленных катализаторов[13].

Промышленное производство[править | править код]

В течение долгого времени пропилен получали как побочный продукт в процессах парового и каталитического крекинга углеводородов. С 1990-х годов заводы парового крекинга переориентировались на производство этилена, в ходе которого пропилен как побочный продукт не образуется. Соответственно, компенсация этого процесса происходит за счёт методов целевого получения пропилена. В некоторых регионах эти методы оказываются более выгодными за счёт дешёвого сырья[14].

Побочный продукт в производстве этилена[править | править код]

В процессе производства этилена методом крекинга в депропанизаторе выделяется безводная, обессеренная фракция C3, которая содержит пропан, пропилен, пропадиен и пропин, а также следы углеводородов С2 и С4. Доля пропадиена и пропина может достигать 8 мол. %, поэтому эту фракцию селективно гидрируют на палладиевых катализаторах, рассчитывая количество водорода так, чтобы превратить углеводороды C3H4 в C3H6, но не позволить пропену превратиться в пропан. При жидкофазном гидрировании эту стадию контролируют парциальным давлением водорода, а при газофазном гидрировании — регулированием температуры в пределах 50—120 °С. При необходимости пропилен затем очищают от пропана в специальной колонне[15].

Побочный продукт нефтепереработки[править | править код]

Пропилен, получаемый при нефтепереработке, также образуется в ходе процессов крекинга, однако эти процессы существенно отличаются от получения этилена паровым крекингом, так как используется другое сырьё, а процессы проводятся с другой целью. Для получения пропилена основным процессом является жидкостный каталитический крекинг (англ. fluid catalytic cracking), в котором катализатор используется в виде кипящего слоя. В ходе этого процесса тяжёлый газойль превращается в бензин и лёгкий газойль. При этом пропилен получается в количестве 3 %, однако его долю можно повысить до 20 % путём модификации катализатора[16].

Пропилен также является побочным продуктом термического крекинга и образуется в процессе коксования и висбрекинга. В случае коксования остаток от перегонки сырой нефти в жёстких условиях разлагают до газойля, кокса, бензина и крекинг-газа (6—12 % последнего). В этом крекинг-газе присутствует фракция С3 в количестве 10—15 мол. %, из которой и получают пропилен. При висбрекинге происходит более мягкий крекинг, нацеленный на уменьшение вязкости смеси. При этом также образуется небольшое количество крекинг-газа[16].

Целевое получение пропилена[править | править код]

В связи с изменением структуры производства пропилена всё большее значение приобретают методы его целевого получения. В США доступность дешёвого пропана, получаемого из сланцевого газа, привела к разработке экономичных методов дегидрирования пропана до пропилена. Аналогичная ситуация наблюдается и в Саудовской Аравии, которая имеет запасы дешёвого пропана. Другим способом промышленного синтеза пропилена является метатезис этилена и бутена-2. Он особенно перспективен при наличии источников дешёвого бутена и этилена. Наконец, пропилен можно получать из угля: путём газификации синтезируется метанол, который затем превращается в этилен и пропилен[17].

Читайте также:  Какие продукты попадают под программу меркурий

Дегидрирование пропана[править | править код]

Дегидрирование пропана — это эндотермическая реакция, которую проводят в присутствии платиновых и хромовых катализаторов на специальных носителях. Селективность этой реакции составляет 85-92 %. Согласно принципу Ле-Шателье, выход пропилена повышается при увеличении температуры и уменьшении давления. Однако высокая температура приводит к побочному процессу разложения пропана на метан и этилен, а также к образованию пропадиена. Поэтому дегидрирование пропана проводят при 500—700 °С и атмосферном (или чуть более низком) давлении[18].

Существует несколько реализаций этого процесса под названиями Oleflex, Catofin и STAR. Они отличаются друг от друга устройством реакторов, применяемыми катализаторами и методами регенерации катализаторов. В некоторых случаях пропан дополнительно разбавляют водородом или паром, чтобы снизить его парциальное давление[18].

Метатезис[править | править код]

Метатезис алкенов представляет собой химический процесс, в котором две молекулы алкенов перегруппировываются, формально обмениваясь друг с другом заместителями. Соответственно, к пропилену в такой схеме приводит метатезис бутена-2 и этилена[19].

В 1960-е годы этот процесс проводился в обратную сторону: компания Phillips проводила так называемый триолефиновый процесс, превращая пропен в бутен-2 и этилен с целью получения последнего. В 1972 году это производство было остановлено в связи с ростом потребности в пропилене. С тех пор процесс проводится в сторону образования пропилена; его доля в производстве пропилена составляет 3 %[19].

Крекинг и интерконверсия алкенов[править | править код]

В данном процесс смеси алкенов пропускают над катализатором с целью перераспределения соотношения между компонентами. Условия подбирают таким образом, чтобы основным компонентом этой смеси стал пропилен. Исключительно этот метод используют лишь немногие заводы: более экономично использовать его в комбинации с другими подходами[20].

Производство из метанола[править | править код]

Исходным сырьём в этом методе является газ либо уголь. Сначала их превращают в синтез-газ, который затем превращают в метанол. Метанол затем превращается в этилен и пропилен. Соотношение этилена и пропилена можно регулировать от примерно равных количеств до селективного получения пропилена с выходом 70 %[21].

Экономические аспекты[править | править код]

Большая часть производственных мощностей по пропилену сосредоточена в Европе, Северной Америке и Азии. По состоянию на 2011 год в мире производилось более 78 млн тонн пропилена. Из этого количества 58 % приходилось на заводы по производству этилена паровым крекингом, 32 % — на заводы по каталитическому крекингу нефти, 10 % — на целевой синтез пропилена[22].

Диаграммы по состоянию на 2006 год[источник не указан 399 дней]:

Хранение и транспортировка[править | править код]

Большая трубопроводная сеть для пропилена существует в США (штаты Техас и Луизиана); также небольшая сеть есть в странах Бенилюкса. В остальных странах пропилен перемещают по автодорогам, железной дороге или по морю, что приводит к необходимости иметь большие склады как на стороне производителя, так и на стороне потребителя[23].

При обычных температурах жидкий пропилен хранят под давлением в цистернах до 20 м в диаметре. Также его можно хранить в больших количествах без давления при температуре −47 °С. По железной дороге пропилен перемещают под давлением: в стандартную цистерну помещается 42 т пропилена. По автодорогам можно перевезти 20 т пропилена, поскольку суммарный вес автомобиля ограничен 40 т. По морю перевозят как небольшие цистерны под давлением, так и сжиженный пропилен при низкой температуре[23].

Применение[править | править код]

В 1990-е годы сферы использования пропилена изменились, поскольку его цена возросла и в некоторых местах возникла его нехватка. Соответственно, практически прекратилось его использование, связанное со сжиганием; кроме того, пропилен начали выделять из фракций крекинга при любой возможности[24].

Для использования в промышленности пропилен выпускается с тремя степенями чистоты:

  • нефтехимический пропилен (50—70 % пропилен в пропане) получают в процессах крекинга; такой пропилен используют в производстве сжиженного нефтяного газа, как присадку для повышения октанового числа моторных топлив и в некоторых химических синтезах;
  • химически чистый пропилен используют для промышленного синтеза некоторых продуктов;
  • пропилен для полимеризации содержит минимальные количества примесей, способных отравлять катализаторы полимеризации[24].

По состоянию на 2013 год большая часть пропилена (около 2/3) расходуется на получение полипропилена — полимера, занимающего 25 % среди всех пластмасс.

Также из пропилена получают оксид пропилена, акриловую кислоту, акрилонитрил, пропиленгликоль и кумол. Производство полипропилена и акриловой кислоты возрастает, поэтому ожидается повышение спроса на пропилен[24].

Токсическое действие[править | править код]

Как и другие алкены, пропилен действует на животных как сильный наркотик, хоть это воздействие обнаруживается при концентрациях пропилена в воздухе порядка десятков процентов. Минимальная наркотическая концентрация в смеси с воздухом или кислородом составляет около 40—50 % (мыши, крысы, кошки, собаки). Концентрация 65—80 % для животных летальна. Человек ощущает запах пропилена в концентрации свыше 0,0173—0,024 мг/л. При концентрации в воздухе 15 % человек теряет сознание через 30 мин, при 24 % — через 3 мин, при 35—40 % — через 20 с[25].

Примечания[править | править код]

  1. 1 2 Химическая энциклопедия, 1995.
  2. ↑ Propylene. Sigma-Aldrich. Дата обращения 22 апреля 2019.
  3. ↑ Propylene. Cameo Chemicals — NOAA. Дата обращения 22 апреля 2019.
  4. 1 2 3 Пропилен (пропен, метилэтилен).
  5. ↑ Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны.
  6. ↑ ГОСТ 25043—87 (СТ СЭВ 633—77) Пропилен. Технические условия.
  7. ↑ Нейланд, 1990, с. 109.
  8. 1 2 3 4 Нейланд, 1990, с. 110–114.
  9. ↑ Нейланд, 1990, с. 115–116.
  10. 1 2 Нейланд, 1990, с. 116–118.
  11. ↑ Нейланд, 1990, с. 118–122.
  12. ↑ Нейланд, 1990, с. 123–124.
  13. 1 2 3 Нейланд, 1990, с. 105–106.
  14. ↑ Ullmann, 2013, p. 1–2.
  15. ↑ Ullmann, 2013, p. 2–3.
  16. 1 2 Ullmann, 2013, p. 3–5.
  17. ↑ Ullmann, 2013, p. 5.
  18. 1 2 Ullmann, 2013, p. 5–9.
  19. 1 2 Ullmann, 2013, p. 9–10.
  20. ↑ Ullmann, 2013, p. 10.
  21. ↑ Ullmann, 2013, p. 12.
  22. ↑ Ullmann, 2013, p. 2.
  23. 1 2 Ullmann, 2013, p. 13.
  24. 1 2 3 4 Ullmann, 2013, p. 14–16.
  25. ↑ Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей : в 3 т. / Под ред. Н. В. Лазарева и Э. Н. Левиной. — Л. : Химия, 1976. — Т. 1. — С. 21—22.

Литература[править | править код]

  • Далин М. А. Пропилен // Химическая энциклопедия: в 5 т. / Н. С. Зефиров (гл. ред.). — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные—Трипсин. — С. 103. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
  • Zimmermann H. Propene (англ.) // Ullmann’s Encyclopedia of Industrial Chemistry. — Wiley, 2013. — doi:10.1002/14356007.a22_211.pub3.
  • Нейланд О. Я. Органическая химия. — М. : Высшая школа, 1990. — С. 218–236. — ISBN 5-06-001471-1.
  • Андреас Ф., Гребе К. Химия и технология пропилена / Пер. с нем. В. Н. Тихомировой и Э. З. Черниной, под ред. З. Н. Полякова. — Ленинград : Химия, 1973.
  • ГОСТ 24975.0-89 (СТ СЭВ 1499-79) Этилен и пропилен. Методы отбора проб

Источник

Читайте также:  Какие продукты брать на длительное свидание

    Циклобутан реагирует с водородом в присутствии катализатора с образованием н-бутана, однако для этого требуется более высокая температура (200 °С), чем для гидрирования циклопропана (80 °С). Циклобутан не вступает в реакцию с остальными реагентами, под действием которых раскрывается циклопропановое кольцо. Таким образом, циклобутан вступает в реакции присоединения труднее, чем циклопропан, а последний — труднее, чем пропилен. Однако примечательнее всего сам факт, что циклоалканы вообще вступают в реакции присоединения. [c.269]

    Напишите уравнения реакций присоединения а ) бромистого водорода к пропилену б) иодистого водорода к триметилэтилену в) хлористого водорода при действии его на 2,4,4-триметил-2-пентен. Назовите образующиеся соединения и объясните каждую реакцию. [c.18]

    Реакция образования этиленовых углеводородов из спиртов дает возможность превращать первичные спирты во вторичные или третичные. Напомним, что реакция гидратации идет по правилу Марковникова (см. стр. 78). Так, например, отнимая воду от первичного пропилового спирта, можно получить пропилен, а присоединением молекулы воды к пропилену получают изопропиловый спирт  [c.142]

    Напишите уравнения реакций присоединения иодоводорода к следующим углеводородам 1) пропилену, 2) изобутилену, 3) пропилэтилену, 4) изопропил-этилену, учитывая правило В. В. Марковникова. [c.21]

    Реакции диспропорционирования и рекомбинации пропильных радикалов были изучены при исследовании реакции присоединения атомов Н к пропилену [290]. При этом образуются главным образом изопропильные радикалы, продукты соединения и диспропорционирования которых были идентифицированы. При фотосенсибилизированной парами ртути реакции гидрогенизации пропилена возможны первичные процессы образования не только изопропильных, но и пропильных радикалов. Однако, если диспропорционирование как тех, так и других радикалов доставляет пропан и пропилен, то рекомбинация их приводит уже к различным продуктам — изомерным гексанам. Рекомбинация пропильных радикалов дает н. гексан, изопропильных радикалов 2,3 — диметилбутан и смешанных — 2-метилпентан. Эти процессы протекают при двойных столкновениях радикалов и среднее [c.230]

    При более высоких температурах это промен уточное соединение должно диссоциироваться на ароматическое соединение и свободный атом хлора. Затем идет атака боковой цепи (СИ). Подобное объяснение справедливо и для реакции присоединения хлора к пропилену нри низких температурах, а нри высокой температуре происходит замещение водорода в метильной группе [5]  [c.469]

    Во многих экспериментах определяли равновесный состав реакций присоединения воды к этилену и пропилену в газовой фазе в присутствии жидких или твердых кислотных катализаторов (серной и фосфорной кислот, фосфатов, марганцевых или кадмиевых кислот, окислов металлов и, в особенности, окиси вольфрама на инертных носителях). Большую часть их проводили при 100—400 °С и [c.188]

    При относительно невысоких температурах (600—700 °С) и атмосферном давлении пропилен разлагается на бутадиен, бутилен, этилен, метан, водород и жидкие продукты сложного состава, выход которых составляет 50% (масс.) на превращенный пропилен. В этих условиях распад аллильного радикала проходит значительно медленнее, чем реакция присоединения его по двойной связи  [c.72]

    Напишите уравнения реакций присоединения бромоводорода к пропилену и трифторпропилену СРз—СН = СН2. Объясните направления реакций, ис-пользуя электронную теорию. [c.21]

    С алкенами серная кислота вступает в реакции присоединения. Легче всего взаимодействует кислота с алкенами, содержащими третичный углеродный атом, наиример изобутилен растворяется в 63% Н2304 при комнатной температуре. Вторичные алкены вступают в реакцию с серной кислотой более высокой концентрации. Так, пропилен взаимодействует с 65—70%) кислотой при повышенных температуре и давлении, а для поглощения бутиленов и амиленов нормального строения исшзльзуют 80—90% кислоту. Этилен вступает в реакцию только с 94—98% кислотой. [c.315]

    В случае распада изопропильных радикалов вычисленный тепловой эффект совпадает с вычислением его как разности энергий связей С—Н в изопропильных радикалах [132] и энергии активации реакции присоединения атомов Н к пропилену [62[. Теплота образования изопропил-радикалов, вычисленная на основании этого значения, согласно [c.249]

    В рассмотренных реакциях присоединения атомов Н к олефинам, атомы водорода в случае молекул пропилена И изобутилена присоединяются к наиболее гидрогенизированному атому углерода в этих молекулах, т. е. в соответствии как бы с правилом Марковникова, которое было сформулировано для взаимодействия молекул олефинов и НХ. Вероятность образования пропильных радикалов из молекул пропилена и атомов Н достаточно велика, так как в условиях крекинга пропильные радикалы по отношению к диссоциации на атомы Н и пропилен довольно устойчивы, но зато они легко распадаются на этилен и СНз-радикалы  [c.255]

    Однако эти реакции присоединения с циклопропаном протекают труднее, чем с пропиленом. В отличие от пропилена циклопропан не реагирует с водным раствором перманганата калия. [c.269]

    Выше, говоря о изомеризации свободных радикалов, мы имели в виду реакции, в которых исходным веществом и конечным продуктом являются изомерные радикалы. Однако возможны также реакции изомеризации, продуктом которых являются стабильные молекулы. Например, при реакции разложения горячего изопропильного радикала, образующегося в результате реакции присоединения атомов Н к пропилену, изомеризация сочетается с распадом [347]  [c.203]

    Катализаторами реакции присоединения хлористого водорода к этилену при 120-200°С служат треххлористый висмут или треххлористая сурьма. Эти же катализаторы применяются в реакции присоединения хлористого водорода к пропилену при комнатной температуре /35/. [c.343]

    Первый синтез глицерина (Фридель и Сильва, 1872 г.) похож на только что приведенный, с той только разницей, что пропилен хлорировался на холоду и в результате реакции присоединения получался 1,2-дихлорпропан  [c.111]

    Сравнение каталитической активности фтористого водорода и трехфтористого бора в реакции присоединения уксусной кислоты к пропилену с каталитической активностью смеси [c.507]

    Присоединение галогеноводородов. Реакция присоединения бромистого водорода к пропилену, протекающая по ионному механизму и приводящая к образованию 2-бромпропана, уже была рассмотрена выше (см. стр. 160). Однако в присутствии перекисей или других источников радикалов происходит быстрая цепная реакция и образуется 1-бромпропан XVIII, т. е. происходит так называемое присоединение против правил Марковникова (перекисный эффект). Различие в составе получающихся продуктов объясняется тем, что в первом случае присоединение инициируется протоном, а во втором — радикалом Вг. Альтернативная атака молекулы НВг радикалом R (из перекиси) с образованием Н и R—Вг энергетически значительно менее выгодна. [c.290]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

Читайте также:  Какие продукты кушать при мочекаменной болезни

    Какой продукт образуется в реакции присоединения иодоводорода к пропилену Рассчитайте, какая масса его будет получена, если объем исходного пропилена равен 3,92 л (нормальные условия), а массовая доля выхода равна 60%. [c.173]

    Пропилен, как и другие непредельные углеводороды, реакционноспособен. Для него характерны реакции присоединения, реакции изомеризации и полимеризации. [c.339]

    Дайте определение бромного числа. Представьте реакцию присоединения брома к пропилену. [c.53]

    Получение 1,2-дихлорпропапа хлорированием пропилена в жидкой фазе аналогично получению 1,2-дихлорэтана хлорированием этилена. Реакция присоединения хлора к пропилену протекает по уравнению [c.389]

    При проведении подобных опытов в одинаковых условиях с избытком пропилена очень характерна разница в поведении этилена и пропилена. Только у этилена в ходе реакции присоединения не происходит никакого изменения типа алюминий-алкила, благодаря чему склонность продуктов присоединения к самопроизвольному отщеплению олефина (как предварительной ступени вытеснения), после присоединения не увеличивается Ло сравнению с первоначальной. Это обстоятельство вместе со сравнительно больщой склонностью этилена к присоединению алюминийтриалкила ведет к преобладанию ступенчатого синтеза металлорганического соединения. Возможность такой реакции для пропилена сомнительна. Если димеризовать пропилен, катализируя реакцию трипропилалюминием, то при энергичном течении реакции вытеснения в результате образуется максимум 10% тримера при конечной высокой коцентрации 2-метилпен-тена-1 и небольшой концентрации пропилена в реакторе соединение (II) настолько стабильно, что легко идет присоединение соединения типа [c.172]

    Реакция присоединения ацетальдегида к пропилену в присутствии инициатора описывается кинетическим уравнением г = А[(1С)2] [СН,СНО] [С Н,]» . [c.370]

    Напишите уравнение реакции присоединения хлороводорода к пропилену. [c.315]

    В табл. 14.8 приведены значения, полученные этим способом. Значения табл. 14.8 иллюстрируют влияние различных факторов на скорости процессов присоединения. Реакция присоединения протекает гораздо быстрее с конечными олефинами. Замещенные олефины реагируют медленно из-за стерических препятствий, даже если они могут образовывать стабильные радикалы в реакциях присоединения. Например, тетрафенилэтилен реагирует гораздо медленней, чем ди- или тризамещенные этилены. Стирол, однако, реагирует гораздо быстрее, чем пропилен. В этом случае фенильный заместитель стаби- [c.216]

    В условиях пиролиза, когда глубина разложения исходных веществ велика, с большой скоростью протекают и вторичные реакции, например разложение алкенов и диенов, образовавшихся на первой стадии. При этом наиболее стабильным соединением из первичных алкенов является этилен. Пропилен и бутены на второй стадии реакции в присутствии атомарного водорода разлагаются при этом дополнительно получается этилен, который, в свою очередь, при повыщении температуры увеличивает скорость реакций присоединения с [c.769]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    Если хлорировать пропилен при 240 , в реакцию вступает 26% хлора, из которых 40% расходуется на замещение и 60% — на присоединение. При 280° и степени превращения хлора 80% последний реагирует уже по реакции замещения на 63%, а по реакции присоединения на 37%. Отсюда отчетливо видно, особенпо на примере пропилена, что, начиная с определенной критической температуры, реакция присоединения медленно переходит в реакцию замещения, и в продуктах реакции наряду с дихлерпропапом постепепно появляется хлористый аллил [c.351]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    Как показано выше, несмотря на то что равновесие между радикалами I и II сдвигается в сторону образования радикала I, реакция переноса водорода к радикалу II происходит быстрее, чем к I, в результате чего образуется вторичный хлорид. Доказательством изомеризации радикала I в II служит превращение пропилхло-рида в изопропилхлорид при у-облучении в присутствии хлористого водорода. Эта 1,2-миграция галогена известна, и наблюдается также в броманалогах I. Однако в присутствии бромистого водорода реакция переноса протекает так быстро, что первоначально образующийся радикал моментально вступает в реакцию, что исключает образование его изомера. Поэтому реакция присоединения бромистого водорода к пропилену в радикальных условиях протекает против правила Марковникова с образованием соответствующего продукта  [c.204]

    Наиболее убедительным доказательством изомеризации больших алкильных радикалов были, пожалуй, опыты Мак-Несби и Гордона [20], в которых были проанализированы продукты присоединения радикалов СВд к С2Н4. При температурах от 300 до 500°С основным продуктом был пропилен содержание дейтерия в нем было распределено практически равномерно от О до 50 мол. о, что объяснялось последовательным протеканием ряда реакций присоединения и внутримолекулярного отрыва  [c.18]

Источник