Какой полисахарид содержится в панцирях членистоногих

Какой полисахарид содержится в панцирях членистоногих thumbnail

Эта статья — о природном соединении. О 152-мм советском буксируемом орудии см. Д-20М.

Хитин (C8H13NO5)n (фр. chitine, от др.-греч. χιτών: хитон — одежда, кожа, оболочка) — природное соединение из группы азотсодержащих полисахаридов. Химическое название: поли-N-ацетил-D-глюкозо-2-амин, полимер из остатков N-ацетилглюкозамина, связанных между собой β-(1→4)-гликозидными связями.

Основной компонент экзоскелета (кутикулы) членистоногих и ряда других беспозвоночных, входит в состав клеточной стенки грибов.

История[править | править код]

В 1821 году француз Анри Браконно, директор ботанического сада в Нанси, обнаружил в грибах вещество, нерастворимое в серной кислоте. Он назвал его фунгин[1].
Чистый хитин впервые выделен из внешних оболочек тарантулов. Термин был предложен французским учёным А. Одье, исследовавшим наружный покров насекомых, в 1823 году.

Структура хитина была открыта в 1929 году Альбертом Хофманном[2].

Распространение в природе[править | править код]

Хитин — один из наиболее распространённых в природе полисахаридов. По некоторым оценкам, каждый год на Земле в живых организмах образуются и разлагаются миллиарды тонн хитина.

  • Выполняет защитную и опорную функции, обеспечивая жёсткость клеток — содержится в клеточных стенках грибов.
  • Главный компонент экзоскелета членистоногих.
  • Также хитин образуется в организмах многих других животных — разнообразных червей, кишечнополостных и т. д.

Во всех организмах, вырабатывающих и использующих хитин, он находится не в чистом виде, а в комплексе с другими полисахаридами, и очень часто ассоциирован с белками. Несмотря на то, что хитин является веществом, очень близким по строению, физико-химическим свойствам и биологической роли к целлюлозе, в организмах, образующих целлюлозу (растения, некоторые бактерии) хитин найти не удалось.

Физические свойства[править | править код]

Представляет собой твёрдое бесцветное либо полупрозрачное вещество (жёсткое на ощупь), не растворимое в воде и полярных органических растворителях (этаноле, диэтиловом эфире, ацетоне), растворяется в растворе хлорида лития в диметилацетамиде (при отсутствии следов воды), в концентрированных растворах некоторых солей (хлорид цинка, тиоцианат лития, соли кальция) и в ионных жидкостях.

Химия хитина[править | править код]

В естественном виде хитины разных организмов несколько отличаются друг от друга по составу и свойствам. Молекулярная масса хитина достигает 260 000.

При нагревании с концентрированными растворами минеральных кислот (соляной или серной) происходит гидролиз, в результате образуются мономеры N-Ацетилглюкозамина.

При длительном нагревании хитина с концентрированными растворами щелочей происходит N-деацетилирование и образуется хитозан.

Ферменты, расщепляющие β(1→4)-гликозидную связь в молекуле хитина, называются хитиназами.

Биосинтез[править | править код]

Синтез молекулы хитина происходит в хитосомах, где с помощью одного фермента гликозилтрансферазы известной, как хитинсинтетаза (КФ 2.4.1.16) осуществляется перенос остатков N-ацетил-D-глюкозамина из уридиндифосфат-N-ацетил-D-глюкозамина (UDPGlcNAc) на растущую полимерную цепь.

Практическое использование[править | править код]

Одно из производных хитина, получаемое из него промышленным способом — хитозан. Сырьём для его получения служат панцири ракообразных (криль, камчатский краб), а также продукты микробиологического синтеза. Проблемами производства продукции из хитина и его практического использования занимается Российское хитиновое общество[3].

См. также[править | править код]

  • Хитиназы
  • Полисахариды

Ссылки[править | править код]

  1. Life after death for empty shells: Crustacean fisheries create a mountain of waste shells, made of a strong natural polymer, chitin. Now chemists are helping to put this waste to some surprising uses, Stephen Nicol, New Scientist, Issue 1755, February 09, 1991.
  2. ↑ Hofmann hydrolyzed chitin using a crude preparation of the enzyme chitinase, which he obtained from the snail Helix pomatia. See:
    • A. Hofmann (1929) «Über den enzymatischen Abbau des Chitins und Chitosans» (On the enzymatic degradation of chitin and chitosan), Ph.D. thesis, University of Zurich (Zurich, Switzerland).
    • P. Karrer and A. Hofmann (1929) «Polysaccharide XXXIX. Über den enzymatischen Abbau von Chitin and Chitosan I,» Helvetica Chimica Acta, 12 (1) : 616—637.
    • Nathaniel S. Finney and Jay S. Siegel (2008) «In Memorian: Albert Hofmann (1906—2008), » Chimia, 62 (5) : 444—447 ; see page 444. Available on-line at: University of Zurich
  3. ↑ Сайт Российского хитинового общества

Источник

Все знают о целлюлозе: по общему объему органической массы этот полисахарид занимает первое место на Земле. И все знают, насколько важен этот углевод для промышленности. А вот о полисахариде, который стоит на втором месте по своей массе и не менее полезен человеку, — хитине — помнят разве что любители биологии. Вещество является основным компонентом экзоскелета (панцирь и клешни) членистоногих и некоторых беспозвоночных, а также входит в состав клеточной стенки грибов и бактерий. О невероятных свойствах хитина и их применении в медицине, пищевой промышленности и радиационной защите говорили на совместной научной сессии Российского хитинового общества и кафедры технологии мясных, рыбных продуктов и консервирования холодом Университета ИТМО.

Какой полисахарид содержится в панцирях членистоногих

Источник: www.gorilao.com.br

В природе хитин выполняет защитную и опорную функции, обеспечивая прочность ракообразных, грибов и бактерий. В этом он похож на целлюлозу, которая является опорным материалом клеточной стенки растений. Но хитин является более реакционноспособным, говорится в материалах Российского хитинового общества. При нагревании и обработке концентрированной щелочью он превращается в хитозан. Этот полимер может растворяться в растворах разбавленных кислот, а также связываться и реагировать с другими химическими веществами. Таким образом, иногда химики называют хитозан «конструктором», с помощью которого можно создавать различные полимеры. Чтобы получить хитин в чистом виде, из содержащих его органических веществ удаляют белок, кальций и другие минералы, переводя их в растворимую форму. В результате получается хитиновая крошка.

«Для получения хитина используются ракообразные, грибы и насекомые. К слову, это вещество было впервые обнаружено в шампиньонах. Применение хитина и производного от него хитозана только расширяется. Полисахарид входит в состав пищевых добавок, лекарств, противоожоговых препаратов, растворимых хирургических нитей, используется в противорадиационных целях и во многих других. Хитозан — это полезная вещь, которая требует дальнейшего изучения», — прокомментировал президент Российского хитинового общества, доктор химических наук Валерий Варламов

Хитин в медицине

Благодаря тому, что хитозан отлично реагирует с другими химическими веществами, на цепочку полимера можно «навешивать», например, лекарства и рецепторы. Таким образом, действующее вещество будет высвобождаться только там, где оно нужно, не подвергая токсикозу весь организм. Более того, хитозан сам по себе совершенно не токсичен для живых существ, подчеркнул профессор Всероссийского научно-исследовательского и технологического института биологической промышленности Алексей Албулов.

Университет ИТМО. Алексей АлбуловУниверситет ИТМО. Алексей Албулов

Хитозан также используется в качестве БАДа. Например, его низкомолекулярная фракция непосредственно всасывается в кровь и работает на уровне иммунной системы. Среднемолекулярная фракция является антибактериальным компонентом, который подавляет развитие патогенной микрофлоры в кишечнике. Кроме того, она способствует образованию пленки на слизистых оболочках кишечника, которая защищает их от воспаления. При этом пленка быстро растворяется, что важно для применения в медицине. Высокомолекулярная фракция хитозана служит в качестве сорбента для токсинов, которые есть в желудочно-кишечном тракте.

«Мы знаем много сорбентов, которые также обладают вредными для человека свойствами — они всасываются, откладываются в мышцах и костях. Хитозан лишен всех этих побочных эффектов. Более того, он может сорбировать экстракты трав, которые в связке с ним долго не теряют своих полезных свойств, и использоваться в качестве БАДа. Также хитозан используется в гелевой форме для лечения заболеваний полости рта или ожогов», — добавил Алексей Албулов.

Кроме того, хитозан обладает противоопухолевым эффектом, поэтому может применяться для профилактики рака, подчеркнула ученый секретарь Института микробиологии им. С. Н. Виноградского РАН Ирина Мысякина. Вещество снижает уровень холестерина, так как связывает пищевые липиды и препятствует всасыванию жиров из кишечника. Также ведутся исследования применения хитозана в качестве медицинских имплантов.

Университет ИТМО. Научная сессия Российского хитинового обществаУниверситет ИТМО. Научная сессия Российского хитинового общества

Хитин и генная терапия

Генная терапия сейчас активно развивается. С помощью научного метода можно устранить активность того или иного «вредного» гена или вставить вместо него другой. Но для того, чтобы это сделать, необходимо каким-то образом доставлять «нужную» генную информацию в клетку. Раньше для этого использовались вирусы, однако у этой системы есть множество недостатков: канцерогенность и дороговизна в первую очередь подчеркнул сотрудник Санкт-Петербургской государственной химико-фармацевтической академии Андрей Критченков. Но с помощью хитозана можно доставлять необходимую генную информацию в клетку без вредных последствий и относительно дешево.

«Невирусные векторы для доставки РНК можно буквально музыкально настраивать с помощью химических модификаций. Хитозан — более эффективный вектор, чем липосомы или катионные полимеры, потому что он лучше связывается с ДНК. Кроме того, такие системы нетоксичны, и их можно получать при комнатной температуре», — рассказал ученый.

Хитин в пищевой промышленности

Способность хитозана к абсорбированию используется в пивоварении для удаления осадка. Так называемые помутнения в напитке образуются из-за компонентов сырья и вспомогательных материалов в виде белков, углеводов, живых клеток и оксалатов. Чтобы удалять живые клетки, на этапе осветления продукта используется хитозан, привела пример профессор кафедры пищевой биотехнологии продуктов из растительного сырья Университета ИТМО Татьяна Меледина.

Об использовании хитозана для сохранения свежести сырого мяса рассказал доцент кафедры Денис Бараненко. Для этого пленка из хитозана в составе с другими веществами (крахмал, клетчатка или желатин) была нанесена на продукт, чтобы предотвратить потерю влаги. Дело в том, что понижение активности воды на поверхности продукта увеличивает время его хранения. Кроме того, хитозановая пленка понижает скорость распространения микробов в сыром мясе, подавляет появление бактерии золотистого стафилококка.

Университет ИТМО. Денис БараненкоУниверситет ИТМО. Денис Бараненко

«Обычно свежее мясо хранится не более двух дней. В результате экспериментов с хитозаном нам удалось повысить продолжительность хранения в полтора-два раза. В некоторых случаях срок доходил и до двух недель. Кроме того, с точки зрения потребительских свойств, пленка из хитозана — идеальная упаковка, так как ее практически не видно», — сказал Денис Бараненко.

Хитозан в пищевой индустрии также применяется для свертывания сывороточных белков в молочной промышленности, для производства йодированных продуктов питания на основе создания комплексов «йод-хитозан» и для других целей.

На научной сессии также были представлены возможности Университета ИТМО по разработкам и исследованиям в области применения хитозана.

Источник

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функции[править | править код]

Функция Характеристика
ЭнергетическаяОсновной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
СтруктурнаяВходят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
ЗапасающаяНакапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
ЗащитнаяСекреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства[править | править код]

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды[править | править код]

Крахмал[править | править код]

Крахмалы — полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген[править | править код]

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — аналог крахмала, глюкозного полимера в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Инулин[править | править код]

Инулин и инулиноподобные вещества — полимеры фруктозы. Они служат резервным углеводородом для 36 тысяч видов растений, таких как пшеница, лук, чеснок, топинамбур, цикорий.

Структурные полисахариды[править | править код]

Арабиноксиланы[править | править код]

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза[править | править код]

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — почти чистая целлюлоза. Целлюлоза — полимер повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин[править | править код]

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины[править | править код]

Пектины — совокупность полисахаридов, состоящих из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды[править | править код]

Кислотные полисахариды — полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды[править | править код]

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

Вязкость велановой камеди

Скорость сдвига (rpm)Вязкость (cP)
0.323330
0.516000
111000
25500
43250
52900
101700
20900
50520
100310

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — один из самых важных мембранных полисахаридов, играющий ключевую роль для сохранения структурной целостности клетки, а также являющийся важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания[править | править код]

  1. Varki A., Cummings R., Esko J., Freeze H., Stanley P., Bertozzi C., Hart G., Etzler M. Essentials of glycobiology (неопр.). — Essentials of Glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A., Cummings R., Esko J., Jessica Freeze, Hart G., Marth J. Essentials of glycobiology (неопр.). — Essentials of glycobiology. — Cold Spring Harbor Laboratory Press (англ.)русск., 1999. — ISBN 0-87969-560-9.
  3. ↑ IUPAC Gold Book internet edition: «homopolysaccharide (homoglycan)».
  4. ↑ IUPAC Gold Book internet edition: «heteropolysaccharide (heteroglycan)».
  5. ↑ Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. ↑ N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber. (недоступная ссылка). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. 1 2 Eastwood M., Kritchevsky D. Dietary fiber: how did we get where we are? (англ.) // Annu Rev Nutr (англ.)русск. : journal. — 2005. — Vol. 25. — P. 1—8. — doi:10.1146/annurev.nutr.25.121304.131658. — PMID 16011456.
  9. Anderson JW; Baird P; Davis RH; and others. Health benefits of dietary fiber (англ.) // Nutr Rev (англ.)русск. : journal. — 2009. — Vol. 67, no. 4. — P. 188—205. — doi:10.1111/j.1753-4887.2009.00189.x. — PMID 19335713.
  10. Weickert M. O., Pfeiffer A. F. Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes (англ.) // J Nutr (англ.)русск. : journal. — 2008. — Vol. 138, no. 3. — P. 439—442. — PMID 18287346.
  11. ↑ Dietary Benefits of Fucoidan from Sulfated Polysaccharides (недоступная ссылка). Дата обращения 16 августа 2017. Архивировано 16 августа 2017 года.
  12. Jones P. J., Varady K. A. Are functional foods redefining nutritional requirements? (англ.) // Appl Physiol Nutr Metab (англ.)русск. : journal. — 2008. — Vol. 33, no. 1. — P. 118—123. — doi:10.1139/H07-134. — PMID 18347661. Архивировано 27 февраля 2012 года.
  13. ↑ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. ↑ Animal starch. Merriam Webster. Дата обращения 11 мая 2014.
  15. 1 2 Campbell, Neil A.; Brad Williamson; Robin J. Heyden. Biology: Exploring Life (неопр.). — Boston, Massachusetts: Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses S. W., Bashan N., Gutman A. Glycogen metabolism in the normal red blood cell (англ.) // Blood (англ.)русск.. — American Society of Hematology (англ.)русск., 1972. — December (vol. 40, no. 6). — P. 836—843. — PMID 5083874. (недоступная ссылка)
  17. ↑ https://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I., Suzuki S. An improved quantitative assay of glycogen in erythrocytes (англ.) // Annals of Clinical Biochemistry (англ.)русск. : journal. — 2002. — November (vol. 39, no. Pt 6). — P. 612—613. — doi:10.1258/000456302760413432. — PMID 12564847.
  19. ↑ Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. ↑ Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия (недоступная ссылка). Дата обращения 2 октября 2009. Архивировано 18 июля 2011 года.
  21. Guo H., Yi W., Song J. K., Wang P. G. Current understanding on biosynthesis of microbial polysaccharides (англ.) // Curr Top Med Chem (англ.)русск. : journal. — 2008. — Vol. 8, no. 2. — P. 141—151. — doi:10.2174/156802608783378873. — PMID 18289083.
  22. Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology (англ.). — 1st. — Caister Academic Press (англ.)русск., 2008. — ISBN 978-1-904455-19-6.

См. также[править | править код]

  • Гликаны

Углеводы

Общие:
  • Альдозы
  • Кетозы
  • Фуранозы
  • Пиранозы
Геометрия
  • Аномеры
  • Мутаротация
  • Проекция Хеуорса
Моносахариды
Диозы

Альдодиоза (Гликольальдегид)

Триозы
  • Кетотриоза (Дигидроксиацетон)
  • Альдотриоза (Глицеральдегид)
Тетрозы
  • Кетотетроза (Эритрулоза)
  • Альтотетрозы (Эритроза, Треоза)
Пентозы

Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза, Апиоза )

Дезоксисахариды (Дезоксирибоза)

Гексозы

Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

Гептозы

Кетогептозы (Седогептулоза, Манногептулоза)

>7
  • Октозы
  • Нонозы (Нейраминовая кислота)
  • Сиаловые кислоты (N-ацетилнейраминовая кислота)
Мультисахариды
  • Дисахариды
  • Трисахариды
  • Тетрасахариды
  • Пентасахариды
  • Гексасахариды
  • Олигосахариды
  • Полисахариды (гликаны, глюканы, фруктаны)
Производные углеводов
  • Аминосахара
  • Фосфосахара
  • Ангидросахара
  • Гликозиды
  • N-Гликозиды
  • Гликали
  • Гликоны
  • Енозы
  • Гликозеены
  • Гликозаны
  • Озоны
  • Озазоны
Гликозаминогликаны
  • Гепарин
  • Гепаринсульфат
  • Хондроитин
  • Хондроитинсульфат
  • Гиалуроновая кислота
  • Гепаран
  • Дерматан
  • Дермантансульфат
  • Кератан
  • Кератансульфат
  • Пептидогликан
  • Хитозамин
  • Хондрозамин
Аминогликозиды
  • Канамицин
  • Стрептомицин
  • Тобрамицин
  • Неомицин
  • Паромомицин
  • Апрамицин
  • Гентамицин
  • Нетилмицин
  • Амикацин

Источник