Какой элемент придает кислоте кислотные свойства

Какой элемент придает кислоте кислотные свойства thumbnail

Кислоты – это класс химических соединений, в которых есть атом водорода и кислотный остаток. Напомню, что кислоты делятся на одно-, двух- и трёхосновные (основность определяется числом атомов водорода) и на кислородсодержащие и бескислородные (а это можно узнать, взглянув на кислотный остаток). А сейчас пришло время узнать, как ведут себя кислоты в химических реакциях.

Фото: cornellasap.org

Химические свойства кислот

1. Взаимодействие с металлами

Кислоты могут реагировать с некоторыми металлами. Чтобы узнать, с какими именно металлами могут взаимодействовать металлы, нам понадобится воспользоваться электрохимическим рядом активности металлов (также его называют электрохимическим рядом напряжений металлов). Ряд активности металлов относится к числу справочных материалов, учить наизусть его нет необходимости, поскольку обычно он представлен в учебнике химии или висит в классе химии. Выглядит он следующим образом:

Фото: из открытых источников

Найдите в ряду водород и запомните, что

металлы, стоящие в ряду напряжений ДО водорода (левее водорода), реагируют с кислотами с образованием соли и газообразного водорода, металлы, стоящие ПОСЛЕ (правее) водорода, с кислотами не реагируют.

Пример 1.

Будет ли серная кислота реагировать с цинком? Если будет, напишите уравнение реакции.

Для ответа на первый вопрос найдём в ряду активности металлов цинк. Он стоит левее водорода, следовательно, взаимодействие будет. Записываем уравнение:

Zn + Н2SO4 = ZnSO4 + H2

Пример 2.

Будет ли соляная кислота реагировать с алюминием? Если будет, напишите уравнение реакции.

Алюминий находится в ряду активности до водорода, поэтому реакция будет. Уравнение выглядит так:

Al + 6HCl = 2AlCl3 +3 H2

Пример 3.

Будет ли фосфорная кислота реагировать с серебром? Если будет, напишите уравнение реакции.

Серебро стоит в ряду активности металлов правее водорода, поэтому взаимодействия между фосфорной кислотой и серебром не будет.

2. Взаимодействие с оксидами.

Кислоты реагируют с основными оксидами (оксидами металлов) с образованием солей и воды. С кислотными оксидами (оксидами неметаллов) кислоты не реагируют.

Пример.

Запишите уравнение реакции между оксидом натрия и сернистой кислотой.

Na2O + H2SO3 = Na2SO3 + H2O

В данном случае мы наблюдаем реакцию обмена, когда два исходных реагента поменялись составными частями. В результате реакции между основным оксидом и кислотой всегда образуется соль и вода.

3. Взаимодействие с основаниями.

При взаимодействии кислот с основании также протекает реакция обмена, в результате которой образуются соль и вода.

Пример.

Запишите уравнение реакции между гидроксидом магния и азотной кислотой.

Mg(OH)2 + 2HNO3 = Mg(NO3)2 + 2H2O

С другими кислотами кислоты не реагируют.

Также напомню, что существует особая группа гидроксидов – амфотерные. Они могут вести себя в зависимости от условий как основания или как кислоты.

Амфотерные гидроксиды при взаимодействии с кислотами ведут себя как основания и реагируют с кислотами с образованием соли и воды.

И это нужно запомнить.

Пример.

Запишите уравнение реакции между амфотерным гидроксидом железа (III) и соляной кислотой.

Как сказано чуть выше, с кислотами амфотерные гидроксиды реагируют как основания с образованием соли и воды, то есть здесь будет следующая реакция:

Fe(OH)3 + 3HCl = FeCl3 + 3H2O

4. Взаимодействие с солями.

Кислоты могут реагировать с солями, если соль образована более слабой кислотой (к числу слабых относятся, например, угольная H2CO3 и сернистая H2SO3).

Пример.

Запишите уравнение реакции между карбонатом натрия и серной кислотой.

Карбонат – соль угольной кислоты, поэтому уравнение выглядит так:

Na2CO3 + H2SO4 = Na2SO4 + H2CO3.

Угольная кислота довольно нестойкая в обычных условиях и разлагается на углекислый газ и воды (особенно активно при повышении температуры) по такой схеме:

H2CO3 = H2O + CO2.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Классификация кислот

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

КислородсодержащиеБескислородные
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH  и т.д.)HF, HCl, HBr, HI, H2S

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:

одноосновные

двухосновные

трехосновные
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOH

H2SO4, H2SO3, H2CO3, H2SiO3

H3PO4

3) Летучесть

Кислоты обладают различной способностью улетучиваться из водных растворов.

ЛетучиеНелетучие

H2S, HCl, CH3COOH, HCOOH

H3PO4, H2SO4, высшие карбоновые кислоты

4) Растворимость

РастворимыеНерастворимые
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOHH2SiO3, высшие карбоновые кислоты
Читайте также:  Какими свойствами обладают ферменты

5) Устойчивость

УстойчивыеНеустойчивые
H2SO4, H3PO4, HCl, HBr, HFH2CO3, H2SO3

6) Способность к диссоциации

хорошо диссоциирующие (сильные)

малодиссоциирующие (слабые)

H2SO4, HCl, HBr, HI, HNO3, HClO4

H2CO3, H2SO3, H2SiO3

7) Окисляющие свойства

слабые окислители

(проявляют окислительные свойства за счет катионов водорода H+)

сильные окислители

(проявляют окислительные свойства за счет кислотообразующего элемента)

практически все кислоты кроме HNO3 и H2SO4 (конц.)

HNO3 любой концентрации, H2SO4 (обязательно концентрированная)

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (Какой элемент придает кислоте кислотные свойства), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H+ + Cl—

либо в таком: HCl → H+ + Cl—

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать  в уравнении вместо знака Какой элемент придает кислоте кислотные свойства две стрелки Какой элемент придает кислоте кислотные свойства. Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH3COOH Какой элемент придает кислоте кислотные свойства CH3COO— + H+

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :

H3PO4 Какой элемент придает кислоте кислотные свойства H+ + H2PO4—

H2PO4— Какой элемент придает кислоте кислотные свойства H+ + HPO42-

HPO42- Какой элемент придает кислоте кислотные свойства H+ + PO43-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков,  вследствие чего возрастает прочность связи между ними и положительными ионами H+.

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H2SO4Какой элемент придает кислоте кислотные свойства 2H+ + SO42-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только  за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H2SO4(разб.) + Zn Какой элемент придает кислоте кислотные свойства ZnSO4 + H2

2HCl + Fe Какой элемент придает кислоте кислотные свойства FeCl2 + H2

Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с  основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H2SO4 + ZnO Какой элемент придает кислоте кислотные свойства ZnSO4 + H2O

6HNO3 + Fe2O3Какой элемент придает кислоте кислотные свойства 2Fe(NO3)3 + 3H2O

H2SiO3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH Какой элемент придает кислоте кислотные свойства H2O + NaCl

3H2SO4 + 2Al(OH)3 Какой элемент придает кислоте кислотные свойства Al2(SO4)3 + 6H2O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H2SO4 + Ba(NO3)2Какой элемент придает кислоте кислотные свойства BaSO4↓ + 2HNO3

CH3COOH + Na2SO3Какой элемент придает кислоте кислотные свойства CH3COONa + SO2↑ + H2O

HCOONa + HCl Какой элемент придает кислоте кислотные свойства HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4  без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной  и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

Читайте также:  Какими свойствами обладает ежевика

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого  зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной  и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:характерные химические свойства кислот серной и азотной

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO2Какой элемент придает кислоте кислотные свойства MnCl2 + Cl2↑ + 2H2O

16HBr + 2KMnO4Какой элемент придает кислоте кислотные свойства 2KBr + 2MnBr2 + 8H2O + 5Br2

14НI + K2Cr2O7Какой элемент придает кислоте кислотные свойства 3I2↓ + 2Crl3 + 2KI + 7H2O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe2O3Какой элемент придает кислоте кислотные свойства 2FeI2 + I2↓ + 3H2O

2HI + 2FeCl3Какой элемент придает кислоте кислотные свойства 2FeCl2 + I2↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:

2H2S + SO2 Какой элемент придает кислоте кислотные свойства 3S↓+ 2H2O

Источник

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н+ (или Н3О+).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые. Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые). Подробно про классификацию кислот можно прочитать здесь.

Какой элемент придает кислоте кислотные свойства

Какой элемент придает кислоте кислотные свойства

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота. 

кислотный оксид + вода = кислота

Например, оксид серы (VI) реагирует с водой с образованием серной кислоты:

SO3  +  H2O  →  H2SO4

При этом оксид кремния (IV)  с водой не реагирует:

SiO2  +  H2O ≠

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например, хлор реагирует с водородом:

H20 + Cl20 → 2H+Cl—

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих  кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз раствора сульфата меди (II):

2CuSO4 + 2H2O  →  2Cu + 2H2SO4  +  O2

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3  (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

CaCO3 + H2SO4  →  CaSO4 + 2H2O + CO2

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например, концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

P  + 5HNO3  →  H3PO4  + 5NO2  + H2O

1. В водных растворах кислоты диссоциируют на катионы водорода Н+ и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например, соляная кислота диссоциирует почти полностью:

HCl  →  H+  +  Cl–

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl  + H2O  →  H3O+  +  Cl–

Многоосновные кислоты диссоциируют cтупенчато.

Например, сернистая кислота диссоциирует в две ступени:

H2SO3  ↔ H+ + HSO3–

HSO3– ↔ H+ + SO32–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами.

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например, гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

 Cu(OH)2 + 2HBr  →  CuBr2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

Читайте также:  Какими свойствами обладают шерстяные ткани

Cu(OH)2 + H2SiO3 ≠

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.

Какой элемент придает кислоте кислотные свойства

Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH  +  H3PO4  →   NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

2NaOH  +  H3PO4  →  Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH  +  H3PO4  →  Na3PO4 + 3H2O

Какой элемент придает кислоте кислотные свойства

4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид  = соль + вода

Растворимая кислота + амфотерный гидроксид  = соль + вода

Например, уксусная кислота взаимодействует с гидроксидом алюминия:

3CH3COOH + Al(OH)3  →  (CH3COO)3Al + 3H2O

Какой элемент придает кислоте кислотные свойства

5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3  и др.).

Например, йодоводород можно окислить хлоридом меди (II):

2HI— + 2Cu+2 Cl2 → 2HCl  +  2Cu+Cl + I20

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит. Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода

Какой элемент придает кислоте кислотные свойства

Например, соляная кислота взаимодействует с нитратом серебра в растворе:

Ag+NO3— + H+Cl— → Ag+Cl—↓ + H+NO3—

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты  вытесняют менее сильные кислоты из солей.

Например,  карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

CaCO3 + 2HCl → CaCl2 + H2O  + CO2

5. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей. 

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например, гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl →  KCl  +  CO2 + H2O

Ещё пример: гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

H3PO4 +  K2HPO4  →  2KH2PO4 

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например, гидроксокарбонат меди (II) растворяется в серной кислоте:

2H2SO4 +  (CuOH)2CO3  →  2CuSO4  + 3H2O  +  CO2

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например, гидроксохлорид алюминия взаимодействет с соляной кислотой:

Al(OH)Cl2 +  HCl  →  AlCl3  + H2O 

6. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:

Какой элемент придает кислоте кислотные свойства

При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2↑

Например, железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2H+Cl  →  Fe+2Cl2 + H20

Сероводородная кислота H2S, угольная H2CO3, сернистая H2SO3 и кремниевая H2SiO3 с металлами не взаимодействуют.

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции. Я настоятельно рекомендую выучить их наизусть.

7. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SO3 и азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

H2CO3  →   H2O + CO2

H2SO3  →   H2O + SO2

2HNO2  →  NO + H2O + NO2

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:

H2SiO3  →   H2O + SiO2

2HI  →   H2  +  I2

Азотная кислота HNO3 разлагается при нагревании или на свету:

4HNO3  →  O2 + 2H2O + 4NO2

Какой элемент придает кислоте кислотные свойства

Источник