Какой из приведенных материалов не проявляет ферромагнитных свойств

Какой из приведенных материалов не проявляет ферромагнитных свойств thumbnail

Инфоурок

Физика
›Тесты›Тест по физике на тему»Трансформаторы»

Описание презентации по отдельным слайдам:

1 слайд

Тест по теме: Переменный ток. Генератор переменного тока. Трансформаторы и их

Описание слайда:

Тест по теме: Переменный ток. Генератор переменного тока. Трансформаторы и их применение

2 слайд

Какой из перечисленных материалов не проявляет ферромагнитных свойств? Никель

Описание слайда:

Какой из перечисленных материалов не проявляет ферромагнитных свойств? Никель Платина Кобальт Железо Вопрос №1.

3 слайд

Какое поле возникает вокруг движущихся электрических зарядов? Электрическое Э

Описание слайда:

Какое поле возникает вокруг движущихся электрических зарядов? Электрическое Электромагнитное Магнитное Гравитационное Вопрос №2.

4 слайд

Каково при известном токе I соотношение между магнитодвижущими силами F1 и F2

Описание слайда:

Каково при известном токе I соотношение между магнитодвижущими силами F1 и F2 вдоль концентрических окружностей соответственно с радиусами r1 и r2, показанных на рис. 1? F1 F2 F1 F2 F1 F2 Нельзя определить ответ Вопрос №3.

5 слайд

Из рассмотрения петли гистерезиса на следует, что при напряженности катушки Н

Описание слайда:

Из рассмотрения петли гистерезиса на следует, что при напряженности катушки Н, равной напряжённости сердечника Нс, магнитная индукция В=0. Что это означает? Магнитные поля катушки и сердечника имеют равные значения, но направлены в разные стороны. Магнитное поле сердечника отсутствует, магнитное поле катушки не равно нулю. Магнитные поля катушки и сердечника равны нулю. Магнитного поля нет Вопрос №4.

6 слайд

Исходное положение рамки с током показано на рисунке. Какое положение займёт

Описание слайда:

Исходное положение рамки с током показано на рисунке. Какое положение займёт рамка в результате взаимодействия с магнитами? Повернётся на угол 180 градусов Повернётся на угол 90 градусов против часовой стрелки Останется в исходном положении Повернётся на угол 90 градусов по часовой стрелке Вопрос №5.

7 слайд

Какое из приведённых соотношений соответствует явлению электромагнитной индук

Описание слайда:

Какое из приведённых соотношений соответствует явлению электромагнитной индукции? Вопрос №6.

8 слайд

Какое из приведённых соотношений соответствует явлению самоиндукции? Вопрос №7.

Описание слайда:

Какое из приведённых соотношений соответствует явлению самоиндукции? Вопрос №7.

9 слайд

Какое из приведённых соотношений соответствует закону Ампера? Вопрос №8.

Описание слайда:

Какое из приведённых соотношений соответствует закону Ампера? Вопрос №8.

10 слайд

Какое из приведённых соотношений соответствует закону полного тока?   Вопрос

Описание слайда:

Какое из приведённых соотношений соответствует закону полного тока?   Вопрос №9.

11 слайд

Какое из приведённых соотношений соответствует закону Ома для магнитной цепи?

Описание слайда:

Какое из приведённых соотношений соответствует закону Ома для магнитной цепи? Вопрос №10.

12 слайд

Какой из параметров сильнее всего влияет на индуктивность L кольцевой катушки

Описание слайда:

Какой из параметров сильнее всего влияет на индуктивность L кольцевой катушки? Площадь сечения S Число витков катушки w Длина катушки l Абсолютная магнитная проницаемость µа среды Вопрос №11.

13 слайд

Каково соотношение между энергиями магнитных полей двух катушек с одинаковыми

Описание слайда:

Каково соотношение между энергиями магнитных полей двух катушек с одинаковыми значениями установившегося тока: со стальным сердечником Wc и без сердечника W? Определить невозможно Вопрос №12.

14 слайд

Результаты теста Всего вопросов: Правильных ответов: Процент правильных ответ

Описание слайда:

Результаты теста Всего вопросов: Правильных ответов: Процент правильных ответов: Оценка:

Выберите книгу со скидкой:

Какой из приведенных материалов не проявляет ферромагнитных свойств

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА

Инфолавка — книжный магазин для педагогов и родителей от проекта «Инфоурок»

Какой из приведенных материалов не проявляет ферромагнитных свойств

Курс повышения квалификации

Какой из приведенных материалов не проявляет ферромагнитных свойств

Курс повышения квалификации

Какой из приведенных материалов не проявляет ферромагнитных свойств

Курс повышения квалификации

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Номер материала:

ДБ-575099

Вам будут интересны эти курсы:

Оставьте свой комментарий

Источник

Валерій Пістольний  ·  15 апреля 2016

37,2 K

Researcher, Institute of Physics, University of Tartu

Сверхпроводники I рода (например, свинец, олово) обладают полным эффектом Мейснера в сверхпроводящем состоянии, то есть полностью выталкивают магнитное поле. Для сверхпроводников II рода (например, сплавы ниобия, сплавы молибдена, ВТСП-материалы) наблюдается частичный эффект Мейстнера, но если концентрация вихрей Абрикосова в теле сверхпроводника низка (не очень сильное поле), то макроскопически можно считать, что они тоже выталкивают магнитное поле. Через пластинку из таких материалов нельзя ничего примагнитить (если они находятся в СП состоянии, то есть это работает только при очень низких температурах).

Другой вариант — магнитотвердый ферромагнетик (например, неодим-кобальтовый сплав, гексаферриты) в разупорядоченном состоянии.  У него, правда, скорее всего все равно будет какая-то спонтанная намагниченность, но вплоть до какого-то значения напряженности внешнего магнитного поля (определяется коэрцитивной силой ферромагнетика, у магнитотвердых материалов она высокая) сквозь него тоже нельзя будет ничего примагнитить внешним магнитным полем.

судя по даной статье https://dic.academic.ru/dic.nsf/es/14956/%D0%B3%D0%B5%D0%BA%D1%81%D0%B0%D1%84%D0%B5%D1%80%D1%80… Читать дальше

Кандидат в муниципальные депутаты Восточного Измайлово, программист, Москва

Указанным Вами свойством обладают сверхпроводники и достаточно большой слой плазмы. Они выталкивают из себя магнитное поле, поэтому «окутав» магнит (или цель) одним из этих материалов, вы исключите воздействие магнитного поля

Так волны, или примагнитить?

У меня чаcы марки TAG Heuer из такого материала сделаны. Сталь -маломгнитка с магнием и необием. Применен принцип разориентанции магнитных доменов, как в наших подлодках последнего поколения. Они стальные и ремешок тоже, только вот их не видно на рентг-аппаратах аэропортов.

По образованию Автоматизатор производств. По призванию программист, психолог и…

Существует ли материал который НЕ пропускает магнитные волны? Например, что б через пластинку из материала невозможно было примагнитить железо.
Для тех, кто ищет такой материал: Подобный метал используют внутри винчестеров. Там есть 2 запчасти на 1 винчестер такие. Выглядят как металические дуги к которым прикреплена еще одна металическая дуга по-меньше. Дуга по-меньше… Читать далее

Свистёж !!!… Это сталь , а почему такой эффект — не скажу по понятным причинам !..

Магнитится ли медицинская сталь?

Что такое медицинская сталь?

Это сплав различных стойких к коррозийному разрушению металлов, применяемый для создания различных медицинских изделий и украшений.

Сталь активно применяют не только потому что она является стойкой к коррозии, но ещё из-за плотности сплава, твёрдости получаемого материала. Её структура однородна, не имеет пористых участков, отлично отталкивает влагу, а также на ней не появляется механических повреждений, долговечна, имеет антисептические свойства.

В наше время она встречается различных видов:

  • Молибденхромовая, которая применяется для изготовления посуды и медицинских принадлёжностей.
  • Ферритинная, применяемая для создания врачебных иснтрументов.
  • Хромоникелевая, из неё изготавливают украшения.

Прочитать ещё 1 ответ

Существуют оптические полупроводники,так вот,создав шар из этого материала,что будет происходить если свет будет попадать в шар, но не сможет из него выходить?

Researcher, Institute of Physics, University of Tartu

Читайте также:  Какие есть полезные витамины и их полезные свойства

А что подразумевается под «оптическим полупроводником»? Оптически прозрачный? Если да, то можно представить себе шар из такого прозрачного материала, например, монокристалла оксида цинка или что-то в этом роде, покрытый идеальным зеркалом. Попав внутрь такого шара видимый свет будет метаться от стенки к стенки за счет многократных отражений. Поскольку у любого материала какое-то поглощение или рассеяние в видимой области все-таки есть, то постепенно интенсивность света будет падать, ну и рано или поздно всё диссипирует в теплоту.

Если Вы что-то другое имеете в виду, то поясните, пожалуйста.

Прочитать ещё 1 ответ

Как намагнитить металл?

Химия, кулинария, математика.

Надо взять изолированный провод и сделать из него катушку. Внутри катушки должно быть место для вашего металла. Поместите металл в катушку и подключите провод к источнику тока. Через несколько минут вытащите металл. Если его силы не достаточно то зарядите его еще раз. Будьте предельно осторожны!!!!!

Прочитать ещё 1 ответ

Источник

Все материалы по магнитным свойствам подразделяют на две группы: ферромагнитные (железо, кобальт, никель, гадолиний и некоторые другие материалы и сплавы) и неферромагнитные (все материалы, за исключением ферромагнитных, например дерево). Различные магнитные свойства материалов наглядно характеризуется зависимостью B=f(H), графическое изображение которой называют кривой намагничивания. Для неферромагнитных материалов зависимость B=f(H) является линейной, а для ферромагнитных – существенно нелинейной.

Производная дает зависимость абсолютной магнитной проницаемости от напряженности магнитного поля: . Нелинейный характер кривых B=f(H) и для ферромагнитных материалов оказывает большое влияние на расчет магнитных цепей.

Ферромагнитные материалы подразделяют на магнитомягкие и магнитотвердые.

Магнитомягкие материалы – технически чистое железо, электротехнические конструкционные стали, пермаллои, некоторые типы ферритов имеют небольшую коэрцитивную силу, до 100 А/м, т.е. узкую петлю гистерезиса.

Магнитотвердые материалы – мартенситные стали, сплавы железа, никеля, алюминия, кобальта и некоторые типы ферритов – имеют значительно большую коэрцитивную силу, до А/м и выше, а следовательно, широкую петлю гистерезиса. Поэтому потери энергии на перемагничивание для магнитомягких материалов ниже, чем магнитотвердых. Это происходить потому, что потери прямо пропорциональны площади петли гистерезиса.

Магнитомягкие материалы используют в устройствах с изменяющимися магнитными полями; магнитотвердые применяют, в частности, для изготовления постоянных магнитов.

Основной магнитный материал, используемый в электротехнических устройствах, — электротехническая сталь различных марок, представляющая собой сплав железа с кремнием (кремния 0,5…5%). Такие стали отличаются хорошими электромагнитными свойствами, высокой магнитной проницаемостью, малыми потерями на вихревые токи и перемагничивание.

Различные ферромагнитные материалы обладают неодинаковой способностью намагничиваться. Так, при одинаковой напряженности H магнитного поля величина магнитной индукцииВ для электротехнической стали во много раз больше, чем для чугуна.

По электромагнитным свойствам магнитные цепи можно разделить на следующие четыре группы.

1. Магнитные цепи с постоянной МДС (магнитные цепи постоянного тока). Магнитные потоки таких цепей создаются обмотками (катушками), расположенными на ферромагнитных магнитопроводах; питание обмоток осуществляется постоянным током.

2. Магнитные цепи с переменной МДС ( магнитные цепи переменного тока). Магнитные потоки таких цепей создаются обмотками, расположенными на магнитопроводах, ток в которых является переменной величиной, зависящей от времени.

3. Магнитные цепи с постоянной и переменной МДС (магнитные цепи постоянного и переменного тока). Магнитные потоки таких цепей создаются двумя МДС, одна из которых обусловлена постоянным током, другая – переменным.

4. Магнитные цепи с постоянными магнитами. К таким цепям относятся устройства, в которых для получения магнитного потока используют постоянные магниты.

По своей конфигурации магнитные цепи можно разделить на два вида: неразветвленные и разветвленные, которые в свою очередь, могут быть симметричными и несимметричными. Симметричной магнитной цепью является такая цепь, в которой условия для прохождения магнитных потоков от точки разветвления общего магнитного потока одинаковы для каждой ветви, т.е. одинаковы геометрические размеры и материал магнитопровода. Симметричные магнитные цепи часто встречаются в электрических машинах, трансформаторах, электроизмерительных приборах и др.

Кроме того, магнитные цепи могут быть однородными и неоднородными. Однородной магнитной цепью является такая цепь, в которой условия для прохождения магнитного потока вдоль неразветвленного участка цепи не изменяются, т.е. сечение и материал остаются неизменными.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 апреля 2018;
проверки требуют 8 правок.

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

Читайте также:  Какое свойство воды позволяет существовать мировому круговороту воды на земле

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

    Электронное строение атомов (и ионов) элементов триады железа таково, что оно обусловливает ярко выраженные магнитные свойства как простых соединений (металлы), так и большинства сложных соединений. Действительно, число неспаренных электронов в невозбужденных атомах Ре, Со, N1 велико. Для железа оно равно четырем, для кобальта — трем, для никеля — двум. Недостроенный З -подуровень и неспаренные электроны у Ре, Со, N1 являются причиной и другого, [c.114]

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]

    По магнитным свойствам различают диамагнитные металлы (выталкиваемые из магнитного поля) и парамагнитные (втягиваемые магнитным полем). Диамагнитны медь, серебро, золото, цинк, кадмий, ртуть, цирконий. Парамагнитными считают скандий, иттрий, лантан, титан, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, рутений, радий, палладий, осмий, иридий, платину. Железо, кобальт и никель обладают ферромагнетизмом, т. е. особенно высокой магнитной восприимчивостью. [c.257]

    МАГНИТНЫЕ СВОЙСТВА ЖЕЛЕЗА, КОБАЛЬТА И НИКЕЛЯ [c.131]

    Кобальт и никель входят как легирующие металлы в стали на ос нове железа, придавая им особые свойства (нержавеющие, инструментальные, с особыми магнитными свойствами). Большое количества кобальта расходуют в производстве сверхтвердых материалов на базе карбидов вольфрама и титана (ВК8, ТК6 и т. д.). Никель с медьк> образует ряд сплавов, обладающих ценными свойствами констан-тан (45% N1) и никелин — материал для электропроводов, нейзильбер — неокисляющиеся сплавы, содержащие N1, Си и 2п. Никель-также входит в состав алюминиевых сплавов и т. д. Большое количество никеля идет на процессы никелирования. [c.140]

    Высоким постоянством (г а в слабых полях обладают некоторые сплавы системы железо — никель — кобальт, получившие название перминвары. Содержание основных элементов в перминваре может варьироваться в широких пределах, но обычно он содержит 30% Ре, 45% N1 и 25% Со (перминвар 45—25). Данные по магнитным свойствам сплавов типа перминвар приведены на рис. 28.90 — 28.94 и в табл. 28.36. (См. также ГОСТ 10994—74). [c.555]

    Магнитные свойства. По отношению к магнитному полю все металлы делятся на три группы диамагнитные, парамагнитные и ферромагнитные. К диамагнитным веществам (обладающим отрицательной восприимчивостью к магнитному полю и оказывающим сопротивление силовым его линиям) относятся часть элементов I (Си, Ag, Ли), П группы (Ве, Zn, Сс1, Hg), П1 (Са, 1п, Т1) и IV группы (Се, Зп, РЬ) периодической системы. Металлы щелочных, щелочноземельных элементов, а также большинства -элементов хорошо проводят силовые линии магнитного поля, обладают положительной магнитной восприимчивостью. Они являются парамагнитными веществами и намагничиваются параллельно силовым линиям внешнего магнитного поля. Очень высокой магнитной восприимчивостью обладают Ге, Со, N1, Ос1, Ву. Они являются ферромагнетиками. Ферромагнетики характеризуются температурой, выше которой ферромагнитные свойства металла переходят в парамагнитные. Эта температура называется температурой Кюри. Для железа, кобальта и никеля эта температура составляет 768, 1075 и 362 °С, соответственно. [c.324]

    Магнитные свойства металлов железа, кобальта, никеля (а также их сплавов), находящихся в высокодисперсном состоянии, определяются формой и размерами частиц [1]. Такие же результаты были получены при исследовании размеров и формы частиц высокодисперсного кобальта 12] и его сплавов с железом [3]. [c.110]

    Физические свойства. Железо, кобальт и никель характеризуются наличием ряда полиморфных видоизменений. Полиморфные превращения железа, отчасти кобальта и никеля, имеют очень большое значение в машиностроении, так как они обусловливают структуру и свойства сплавов. Полиморфные превращения железа а-Ре при 768 С теряет свои магнитные свойства ( -превращение), при 910°С переходит в у-Ре при 140РС переходит вб-Ре и при 1539 С плавится. [c.126]

    Среди комплексных соединений, также применяемых в качестве катализаторов, лишь те парамагнитны, которые содержат атомы с неполностью занятыми подгруппами (п = Зд, 4д, или 63 соответственно). Из сравнения [266] магнитных свойств комплексных соединений хрома, железа, кобальта, никеля и меди со свойствами их ионов видно, что аммиачные комплексы хрома, никеля и меди почти так же сильно магнитны, как ионы Сг , N1 и Си , между тем как аммиачные комплексы кобальта и цианид железа не магнитны. Они имеют магнетизм часто типа насыщенных соединений ванадия, хрома, марганца и ниобия. [c.81]

Читайте также:  Общие свойства какие еще бывают свойства

    Ферромагнетизм — частный случай парамагнетизма, характеризующийся тем, что ферромагнитный металл, помещенный предварительно в магнитное поле, неограниченно сохраняет свойство развивать свое собственное подобное поле. Ферромагнетизм встречается только в случае нескольких элементов — железа, кобальта, никеля и некоторых лантанидов, а также некоторых сплавов этих металлов даже с неметаллическими элементами (С, 51, А1), более слабый — у окиси железа (Рез04). Особенно сильным ферромагнетизмом обладают некоторые сплавы неферромагнитных металлов, например сплав Гейслера [c.579]

    Железо, кобальт, никель, применяемые как конструкционные материалы и гальванически осаждаемые покрытия в большинстве отраслей техники, являются также и самой распространенной матрицей в системах КМ и КЭП [1, 13, 17, 21]. Прогнозирование свойств КМ основывается на знании их физических характеристик и поведения при высоких температурах в контакте с фазой И и средой. Для указанных металлов близки многие физические характеристики (кристаллическая структура, плотность, Гпл, магнитные и электрические свойства и др.). [c.125]

    Данные электронной микроскопии согласуются с измерениями магнитных свойств высокодисперсных тройных сплавов железо — кобальт — никель в тех случаях, где представлены на снимках мелкие частицы сплава, измеренные основные магнитные характеристики довольно высоки, а там, где получены крупные частицы, магнитные свойства резко падают. Так, при наличии концентраций электролита 50 и 500 г/л магнитные свойства порошков следующие для первого случая коэрцитивная сила порошков Н = 700—780 э, для второго Не = 300—350 э- При наличии pH электролита равном 1,5, коэрцитивная сила образующихся частиц при электролизе равна [c.112]

    Кобальт и никель — блестящие металлы, обладающие, как и железо, магнитными свойствами. Плотность кобальта 8,79 г/сж (8,79 10 /сг/ж ), никеля — 8,9 г/сж (8,9 10 /сг/ж ) т. пл. кобальта 1490° С, никеля 1452° С. [c.316]

    КОБАЛЬТА СПЛАВЫ — сплавы на основе кобальта. Отличаются малым коэфф. термического расширения — (15,9 — 16,5) 10 град в интервале т-р 20—870 С, жаростойкостью, высокой коррозионной стойкостью и особыми магнитными свойствами. Наибольшее применение нашли снлавы кобальта с тяжелыми металлами — железом, хромом, никелем, молибденом, вольфрамом и др. (табл.), нредставляюш,ие собой твердые растворы. Такие снлавы подразделяют на твердые, жаропрочные и магнитные. К твердым относятся сплавы типа стеллит, наплавляемые (для повышения износостойкости и реставрации рабочих органов) на кромки режупц1Х инструментов и детали машин. Стеллиты, содержащие 80% Со и 20% Сг, наз. мягкими (см. также Стеллит, Твердые сплавы). Твердые сплавы, упрочненные карбидными фазами с содержанием до 1% С, способны сохранять св-ва до т-ры [c.597]

    Материалы теряют ферромагнитные свойства, если энергия теплового движения превышает значение обменной энергии. Это происходит при температуре, которую называют точкой Кюри. Чем больше обменная энергия, характеризуемая обменным интегралом, тем должна быть выше точка Кюри. Точка Кюри для железа равна 753 °С, для кобальта -1127 °С, для никеля — 358 °С, для гадолиния — 16 °С. При снижении значений этого параметра магнитные свойства материалов восстанавливаются. [c.242]

    Магнитные свойства веществ. Все вещества делятся на парамагнитные и диамагнитные. Вещество называется парамагнитным, если его атомы (или молекулы) обладают магнитным моментом, и диамагнитным, если его атомы не обладают постоянным магнитным моментом. Немногие твердые тела, например, железо, кобальт, никель обладают способностью намагничиваться в определенных условиях и оставаться намагниченными после устранения внешнего магнитного поля. Такие вещества называются ферромагнетиками. [c.114]

    Свойства. Металлический кобальт, серовато-стального цвета, по внешнему виду сходен с железо.м, но тверже его и никеля. В тонко раздробленном состоянии он легко окисляется во влажном воздухе. При температуре белого каления о сгорает в С03О4. Магнитные свойства, которыми он обладает, теряются при те.мпературе выше П5°. Из сплавов кобальта назовем стеллит, сталь, содержащую кобальт и хром, отличающуюся весьма большой твердостью и противокоррозийными свойствами карбалой, сплав карбида, вольфра.ма с кобальтом, также отличается своей очень большой твердостью магнитную сталь, содержащую S5% кобальта. Окись кобальта служит для окраски стекла и эмали в синий цвет. [c.265]

    Весьма ценными свойствами металлов являются их пластичность, упругость, прочность. Они способны под давлением изменять свою форму, не разрушаясь. Это свойство металлов позволяет прокатывать их в листы или вытягивать в проволоку. Прочность и пластичность металлов зависят от температуры с повышением температуры прочность понижается, а пластичность возрастает. По степени твердости металлы значительно отличаются друг от друга. Так, калий, натрий — металлы мягкие (их можно резать ножом) хром по твердости близок к алмазу — царапает стекло. Температура плавления и плотность металлов также изменяются в широких интервалах. Самый легкоплавкий металл — ртуть (температура плавления —38,87°С) самый тугоплавкий — вольфрам (температура плавления 3370 °С). Плотность лития — 590 кг/м , а осмия — 22 480 кг/м . Металлы отличаются также своим отношением к магнитным полям. По этому свойству они делятся на три группы ферромагнитные металлы — способные намагничиваться при действии слабых магнитных полей (например, железо, кобальт, никель и гадолиний)  [c.389]

    Ферромагнитными называются вещества, способные сильно намагничиваться даже в слабых магнитных полях. К ним относятся железо, никель, кобальт, некоторые сплавы. Ферромагнетизмом называют совокупность магнитных свойств, характерных для этих веществ. [c.153]

    Магнитная дефектоскопия основана на способности магнитных силовых линий свободно проходить через слой металла и изменять свое направление при встрече с инородными включениями ввиду их пониженной магнитной проницаемости. Отклоненные силовые линии улавливаются приборами, по показаниям которых делают заключение о качестве металла. Этот способ применим только для металлов, обладающих магнитными свойствами (железо, никель, кобальт). [c.7]

    С. Мейера и других по магнитной восприимчивости элементов, которые показали, что в рядах э