Какой из газов в первичной атмосфере земли содержался

Образование атмосферы Земли началось в далекие времена — в протопланетный этап развития Земли, в период активных вулканических извержений с выбросом огромного количества газов* Позже, когда на Земле появились океаны и биосфера, образование атмосферы продолжилось за счет газообмена между водой, растениями, животными и продуктами их разложения*

В течение всей геологической истории атмосфера Земли претерпела ряд глубоких трансформаций.

Первичная атмосфера Земли. Восстановительная.

В состав первичной атмосферы Земли на протопланетной стадии развития Земли (более 4,2 млрд л. н.) входили преимущественно метан, аммиак и углекислый газ. Затем в результате дегазации мантии Земли и непрерывных процессов выветривания на поверхности земли, состав первичной атмосферы Земли обогатился парами воды, соединениями углерода (СO2, СО) и серы, а также сильными галогенными кислотами (НСI, НF, НI) и борной кислотой. Первичная атмосфера была очень тонкая.

Вторичная атмосфера Земли. Окислительная.

В дальнейшем первичная атмосфера стала трансформироваться во вторичную. Это произошло в результате тех же процессов выветривания, происходивших на поверхности земли, вулканической и солнечной активности, а также вследствие жизнедеятельности цианобактерий и сине-зеленых водорослей.

Результатом трансформации стало разложение метана на водород и углекислоту, аммиака – на азот и водород. В атмосфере Земли стали накапливаться углекислый газ и азот.

Сине-зеленые водоросли посредством фотосинтеза стали вырабатывать кислород, который практически весь тратился на окисление других газов и горных пород. В результате этого аммиак окислился до молекулярного азота, метан и оксид углерода – до углекислоты, сера и сероводород – до SO2 и SO3.

Таким образом, атмосфера из восстановительной постепенно превратилась в окислительную.

Образование и эволюция углекислого газа

в первичной и вторичной атмосфере.

Источники углекислого газа на ранних этапах образования атмосферы:

  • Окисление метана,
  • Дегазация мантии Земли,
  • Выветривание горных пород.

Содержание углекислоты в атмосфере ранней Земли было весьма значительно. Однако большая ее часть растворялась в водах гидросферы, где участвовала в постройке раковин различных водных организмов, биогенным путем превращаясь в карбонаты.

На рубеже протерозоя и палеозоя (ок. 600 млн. л.н.) содержание углекислого газа в атмосфере уменьшилось и составило всего лишь десятые доли процента от общего объема газов в атмосфере.

Современного уровня содержания в атмосфере углекислый газ достиг лишь 10-20 млн. лет назад.

Образование и эволюция кислорода

в первичной и вторичной атмосфере.

Источники кислорода на ранних этапах образования атмосферы:

  • Дегазация мантии Земли – практически весь кислород тратился на окислительные процессы.
  • Фотодиссоциация воды (разложения на молекулы водорода и кислорода) в атмосфере под действием ультрафиолетового излучения — в результате в атмосфере появились свободные молекулы кислорода.
  • Переработка углекислоты в кислород эукариотами. Появление свободного кислорода в атмосфере привело к гибели прокариот (приспособленных к жизни в восстановительных условиях) и появлению эукариот (приспособившихся жить в окислительной среде).

Изменение концентрации кислорода в атмосфере.

Архей — первая половина протерозоя – концентрация кислорода 0,01% современного уровня (точка Юри). Практически весь возникающий кислород расходовался на окисление железа и серы. Это продолжалось до тех пор, пока все двухвалентное железо, находящееся на поверхности земли, не окислилось. С этого момента кислород стал накапливаться в атмосфере.

Вторая половина протерозоя – конец раннего венда – концентрация кислорода в атмосфере 0,1% от современного уровня (точка Пастера).

Поздний венд — силурийский период. Свободный кислород стимулировал развитие жизни — анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом. С этого момента накопление кислорода в атмосфере происходило довольно быстро. Выход растений из моря на сушу (450 млн. л. н.) привел к стабилизации уровня кислорода в атмосфере.

Середина мелового периода. Окончательная стабилизация концентрации кислорода в атмосфере связана с появлением цветковых растений (100 млн. л. н.).

Образование и эволюция азота

в первичной  и вторичной атмосфере.

Азот образовался на ранних стадиях развития Земли за счет разложения аммиака. Связывание атмосферного азота и захоронение его в морских осадках началось с появлением организмов. После выхода живых организмов на сушу, азот стал захороняться и в континентальных осадках. Процесс связывания азота особенно усилился с появлением наземных растений.

Таким образом, состав атмосферы Земли определял особенности жизнедеятельности организмов, способствовал их эволюции, развитию и расселению по поверхности земли. Но в истории Земли бывали порой и сбои в распределении газового состава. Причиной этого служили различные катастрофы, которые не раз возникали в течение криптозоя и фанерозоя. Эти сбои приводили к массовым вымираниям органического мира.

Читайте также:  Укажите в каких клетках содержится больше углеводов

Состав древней и современной атмосферы в процентном соотношении приведен в таблице 1.

Таблица 1. Состав первичной и современной атмосферы Земли.

Газы

Состав земной атмосферы

Первичная атмосфера, %

Современная атмосфера, %

Азот N2

1,5

78

Кислород О2

21

Озон О3

10-5

Углекислый газ СО2

98

0,03

Оксид углерода СО

10-4

Водяной пар

0,4

0,1

Аргон Аr

0,19

0,93

Источник: wonderful-planet.ru

Статьи по теме «Атмосфера»:

  • Воздействие атмосферы на организм человека с увеличением высоты.
  • Высота и границы атмосферы.
  • Физические свойства атмосферы.
  • Образование атмосферы. Первичная и вторичная атмосфера.
  • Состав современной атмосферы Земли. Общие данные.
  • Азот в составе атмосферы – содержание в атмосфере 78%.
  • Кислород в составе атмосферы — содержание в атмосфере 21%.

Источник

Когда-то Землю покрывали жерла вулканов, которые, извергаясь, выбрасывали обломки горных пород, клубы пара, углекислый газ, азот и окись углерода. Это и была первичная атмосфера Земли. Планета была беззащитна, а молекулы газов под термическим воздействием высвобождались в космическое пространство.

Земля 4 миллиарда лет назад. Credit: naked-science.ru.

Как образовалась земная атмосфера

Изначально климат планеты был аномально жарким и непригодным для жизни. Однако со временем становилось прохладнее и молекулы газов стали подвергаться процессу испарения. Возникла вода, благодаря которой стали выпадать обильные дожди. Земля пылала жаром, и капли дождя мгновенно вскипали и обращались в пар. Процесс охлаждения земной поверхности ускорился, и лишняя жидкость превратилась в океаны.

Большая часть углекислого газа растворялась в воде и вымывалась проливными дождями. Затем начали происходить биологические процессы, в которых углекислый газ сыграл первостепенную роль.

Эксперимент в ИДГ РАН

Российские ученые, исследовавшие падение метеорита в Челябинске, пришли к заключению, что небесные тела угрожают человечеству более чем когда-либо. ИДГ РАН снарядили экспедицию к месту падения метеорита и опросили большое количество свидетелей из 50 окрестных населенных пунктов. Очевидцы предоставили институту множество видеозаписей, оказав помощь отечественной науке.

В заключении исследователей сказано: «Каждый объект, упавший на Южном Урале в середине февраля того года, оказался частью небольшого астероида. При вхождении в атмосферу он имел скорость 19 км/с. Параметры небесного тела составляли: масса — 11000 т; диаметр — 20 м. Энергия взрыва оценивалась в половину мегатонны, а более 99% твердого вещества превратилось в пыль и газ». Крупнейшим фрагментом метеорита (650 кг), стал кусок, упавший в озеро Чебаркуль.

Челябинский метеорит, Краеведческий музей. Credit: proftur74.ru.

Ежедневно воздух пополняется микрочастицами космического происхождения. Это сказывается на климатических условиях Земли. Каждый год в атмосферу входит до 10-30 объектов диаметром в 1 м. Самым крупным был метеорит, упавший около Тунгуски, ведь его энергия составила диапазон в 3-15 Мт.

Минимум кислорода в первичном составе атмосферы

Миллиарды лет назад состав воздуха разительно отличался от современного. Первую гипотезу предложил Л. Пастер (1822-1895) ближе к концу XIX столетия: Земля была лишена кислорода, но это не помешало появлению простейших микроорганизмов. Анаэробные бактерии в нем не нуждались и по сей день сохранились в неизменном виде. Атмосфера Земли включала в себя:

  • водяные пары;
  • аммиак;
  • водород.

На заре геологической истории магнитосфера стала защитой Земли от солнечного ветра. Так была образована углекислая атмосфера. Газ выбрасывался из недр во время извержений вулканов повышенной интенсивности.

В конце палеозойской эры минимальный объем кислорода позволил появиться первым растениям, благодаря которым углекислый газ стал подвергаться воздействию фотосинтеза и поступать в атмосферу.

Появление жизни и кислорода

1 млрд лет назад первые формы жизни активно развивались без кислорода. Согласно данным, полученным вследствие проведенного в 1953 г. эксперимента, под действием электрического разряда смесь аммиака, метана, водорода и воды разложилась на глицин и прочие аминокислоты. Данный лабораторный опыт длился в течение недели под руководством ученого из Чикагского университета Стенли Миллера. Он доказал научному миру, что при благоприятных условиях в природе происходит активное образование молекул жизни, вопреки соображениям сухой статистики.

Возникновение жизни, или абиогенез, — процесс превращения неживой природы в живую. Credit: alev.biz.

Земная кора содержит в себе около 47,2% кислорода. Его химическая активность под действием высоких температур и связи с другими элементами объясняет, почему на заре времен не было кислорода. Большая часть элементов в природе образуется в виде их твердых окислов. Многие из них с трудом разлагаются на компоненты, что ставит под сомнение существование свободного кислорода раньше.

Читайте также:  В каких овощах содержится больше всего клетчатки

Вода, двуокись углерода, аммиак, метан и некоторые благородные газы — ее основные составляющие. То есть большая часть кислорода — биологического происхождения, и это полностью отвечает теории о том, что ранние формы жизни были способны выделять его, а поздние — активно потреблять.

Сегодня распространена гипотеза абиогенного зарождения живых организмов, их самопроизвольного появления из первичных и более простых веществ, находящихся в атмосфере и океанах. Опарин Александр Иванович развил данную теорию и привел множество доказательств, исходя из которых следует, что первичная атмосфера планеты Земля содержала азот, углекислый газ, воду, сероводород, аммиак и метан в больших количествах.

Состав современной атмосферы Земли

Без кислорода жизнь на Земле невозможна, однако в чистом виде он стал поступать на позднем этапе развития планеты. Некоторые ученые считают, что кислород начал возникать за счет обмена веществ древних растений и стал побочным эффектом процесса фотосинтеза. Со временем он накопился в атмосфере и послужил причиной ряда изменений в характере атмосферы Земли и развитии всего живого.

Атмосфера Земли состоит в основном из двух газов — азота (78%) и кислорода (21%). Credit: present5.com.

В современный состав воздуха входят 4 основных и несколько второстепенных газов, а также примеси, зависящие от характера поверхности Земли и ее области, от вида обитателей. Человек занимает в ее формировании одну из первостепенных ролей. Атмосферными примесями являются:

  • перекись водорода;
  • водяной пар;
  • аммиак;
  • озон;
  • окись углерода;
  • сероводород;
  • пыль;
  • соли;
  • сернистый газ.

Газовый и химический составы атмосферы отличаются от первобытного, и это объясняет многие особенности эволюции.

Баланс кислорода

С точки зрения биологии, кислород преобладает на планете Земля. Его содержание практически неизменно и составляет 21%. Кислород поглощается во время дыхания, а вырабатывается вследствие процесса фотосинтеза. Все это тесно взаимосвязано и является основой природного баланса кислорода в атмосфере.

Распространение кислорода на Земле. Credit: infourok.ru.

Азот

Содержание данного газа в нижних слоях атмосферы составляет 78,084%. Азот инертен и в химических соединениях (нитратах) занимает важную ступень в процессе обмена веществ растительного и животного мира. Живые существа не способны усваивать азот напрямую из воздуха, однако он входит в пищу, которая необходима для ежедневного восполнения энергии. Молекулы газа захватываются микроорганизмами, обитающими в корнях бобовых культур. Сформировавшиеся нитраты становятся доступны для животных, поедающих эти растения.

Благородные газы

В атмосфере содержатся газы, не участвующие в биологических процессах, но играющие первостепенную роль при переносе энергии в высших слоях, это:

  • аргон — 0,934% ;
  • гелий — 0,00000524%;
  • неон — 0,000018%;
  • ксенон — 0,000000087%;
  • водород — 0,0000005%.

Углекислый газ не менее важен для погодных и климатических условий, однако его содержание в атмосфере — не более 0,03%. Увеличение его объема до 0,06% способно повысить температуру планеты на 3°C.

Со времен становления промышленности (более 120 лет назад) человечество увеличило выброс углекислого и прочих газов в слои атмосферы, и в период с 1869 по 1940 гг. общая температура воздуха выросла на 1°C.

Источник

первичная атмосфера Пока еще не удалось достоверно установить историю образования атмосферы. Но уже удалось выявить кое-какие вероятные изменения ее состава.
Атмосфера стала зарождаться сразу после формирования Земли. В процессе эволюции она почти полностью утратила свою первоначальную атмосферу. На раннем этапе наша планета находилась в расплавленном состоянии. Твердое тело начало формироваться около четырех с половиной млрд лет тому назад. Это время и станет началом геологического летоисчисления.
Как раз именно в этот период и начинается медленная эволюция атмосферы.
Такие процессы как выброс лавы во время извержения вулканов, сопровождается неизбежным выбросом газов, таких как азот, метан, водяной пар и другие. При воздействии радиации солнца водяной пар разлагается на кислород и водород. Освободившийся кислород вступает в реакцию с оксидом углерода и образовывается углекислый газ. На азот и водород разлагается аммиак. В процессе диффузии водород поднимается вверх и покидает атмосферу. Азот, который намного тяжелее, не может улетучиться, и постепенно накапливался. Таким образом, азот становится основным компонентом.
В первичной атмосфере Земли наверняка содержались углекислый газ и водород, а между ними возможна реакция, ведущая к образованию болотного газа (метана) и водяного пара. Но основная масса воды, по современным представлениям (Виноградов, 1967), была дегазирована из магмы в течение первых сотен миллионов лет после образования атмосферы. Вода сразу же сильно усложнила характер взаимодействия между компонентами и самую структуру биогеносферы. Насыщение первичной атмосферы водяными парами, способность воды аккумулировать («медленно остывать») солнечную энергию заметно изменили термодинамические условия внутри биогеносферы и даже за ее пределами. Необходимо учитывать два момента; во-первых, с появлением воды значительно энергичнее стали протекать процессы выветривания, в результате которых «заряжаются» солнечной энергией геохимические аккумуляторы. Во-вторых, продукты выветривания (глины, например) вступали в соединения с большим количеством воды, и это повышало их энергетический барьер, т. е. минералы удалялись от того момента, при котором они могли бы отдать аккумулированную солнечную энергию. Чтобы выделить эту энергию, им нужно было сначала «подсохнуть». Осадочные породы обезвоживались, опускаясь в глубь земной коры в результате превращения глин в слюды (серицитизацня). Если раньше они разряжались где-то неподалеку от поверхности, то после появления на Земле воды геохимические аккумуляторы получили возможность за счет влаги уносить солнечную энергию в нижние горизонты биогеносферы и даже за ее пределы, к нижней границе земной коры. Там они отдавали накопленную энергию и тем самым обеспечивали температурный градиент земной коры.
первичная атмосфераНеобходимо, однако, иметь в виду и следующее. При опускании осадочных пород процессу обезвоживания противостоит увеличение давления, которое препятствует освобождению энергии. Вероятно, что магматические очаги — результат бурного освобождения энергии — возникали при тектонических разрывах и т. п., т. е. когда давление ослабевало. Если учесть, что в ту пору форма Земли была менее устойчивой, чем сейчас, и смещение масс протекало более энергично, то во взаимодействии этих факторов с геохимической аккумуляцией можно увидеть причину предполагаемой бурной вулканической деятельности на заре геологической истории нашей планеты.
При воздействии ультрафиолетовых лучей, а также электрических разрядов. Смесь из газов вступала в химическую реакцию, после которых образовались органические вещества – аминокислоты. Таким образом, жизнь могла зародиться в атмосфере, которая отличается от современной атмосферы.
Когда на Земле появились примитивные растения, начал происходить процесс фотосинтеза. Который, как известно, сопровождается выделением свободного кислорода. После диффузии в верхние слои атмосферы этот газ стал защищать нижние слои и поверхность самой Земли от опасного рентгеновского и ультрафиолетового излучения.
Можно предположить, что в первичной атмосфере было много углекислого газа, который расходовался в процессе фотосинтеза, по мере эволюции флоры. Ученые так же полагают, что колебания его концентрации повлияли на климатические изменения в ходе развития Земли.
В современной атмосфере присутствует гелий, который образовывается в результате радиоактивного распада тория, урана и радия. Эти частицы испускают альфа-частицы. Это ядра атомов гелия.
Так как в ходе радиоактивного распада не образуется электрический заряд и не исчезает, то на каждую альфа-частицу приходится по два электрона. Она соединяется с ними. В результате слияния образуются нейтральные атомы гелия.

Читайте также:  Какие витамины содержатся в виноградной косточке

Значительная часть гелия содержится в минералах, которые рассеяны в толщине горных пород и очень медленно улетучивается в атмосферу. Небольшое количество гелия из-за диффузии поднимается наверх в экзосферу. А так как от Земли идет постоянный приток, то объем этого газа в атмосфере остается неизменным.
Оценить относительное содержание разных химических элементов во Вселенной можно на основании спектрального анализа от света звезд, а так же от излучения метеоритов.
  В космосе концентрация неона выше в десять миллиардов раз, чем на Земле. Криптона больше в десять миллионов раз, ксенона – в миллион раз.
Можно сделать вывод, что изначально концентрация этих газов в атмосфере Земли очень сильно снизилась и не пополнялась. Происходило это еще на этапе, когда Земля утратила свою первичную атмосферу. Исключением стал инертный газ аргон. Он в форме изотопа и сейчас образуется при радиоактивном распаде изотопа калия.

Источник