Какой газ содержится в выдыхаемом воздухе

В воздухе, которым мы дышим содержится около 21% кислорода и лишь около 0.04% углекислого газа СО2. Не путайте с угарным газом СО, который смертелен для всего живого.

фото сайта Яндекс Картинки

Мы все знаем, что без кислорода немыслима наша жизнь, дыхание. Прежде, чем вдохнуть кислород, мы выдыхаем углекислый газ. Причем в выдыхаемом нами воздухе кислорода содержится около 15%, на этом и основана реанимационная практика дыхания «рот в рот».

О пользе кислорода мы узнаем еще в школе, а о пользе углекислого газа — забываем. СО2 участвует в фотосинтезе растений, но и в нашем организме он играет живительную роль.

фото сайта Яндекс Картинки

Оплодотворенная человеческая яйцеклетка первое время находится в почти без кислородной среде. С образованием плаценты происходит питание через кровь зародыша кислородом. В крови, взятой из пуповины при рождении ребенка кислорода в 4 раза меньше, а углекислоты в 2 раза больше, чем в крови взрослого человека.

Какова же роль углекислого газа в нашем организме?

1. Регулятор кислотно-щелочного баланса крови.
2. Само дыхание контролируется содержанием СО2 в крови, а не О2.
3. Оказывает важное действие на сердце и периферическое кровообращение.
4. Является мощным обеззараживающим средством (применяют в косметологии и медицине -Карбокси терапия, инъекции при целлюлите)
5. При увеличении содержания углекислоты в артериальной крови происходит расширение сосудов и улучшается снабжение клеток и тканей организма кислородом.
6. Обеспечивает тонус сосудов, бронхов, Участвует в обмене веществ, синтезе гормонов, работе ферментов, и почти во всех биохимических реакциях организма.
7. При его участии производится биосинтез животного белка.

И еще много функций с участием СО2 задействованы в нашем организме. Неслучайно, нормальный уровень СО2 в крови до 6,5-7.5%. Если эта цифра постоянна, все органы и ткани функционируют слаженно.

фото сайта Яндекс Картинки

Учеными созданы тренажеры и специальные методики, гимнастики для повышения уровня СО2 в крови. Над этим работали Бутейко, Стрельникова, Фролов, Неумывакин и другие ученые.

фото сайта Яндекс Картинки

Парадокс, чем глубже дышит человек, пытаясь насытить себя кислородом, тем больше кислородное голодание. И наоборот, повышая уровень углекислоты при помощи тренажеров и специальной дыхательной техники, мы повышаем снабжение организма кислородом.

фото сайта Яндекс Картинки

Не у всех есть время и средства на тренажеры и гимнастику, и профессор И.П.Неумывакин предложил альтернативу — просто дышать в полиэтиленовый пакет. Выдыхать в него воздух и снова вдыхать, пока это возможно.

фото сайта Яндекс Картинки

При помощи СО2 излечиваются многие болезни, от бронхо-легочных до суставных, нормализуется тонус гладкой мускулатуры жкт, помогает снять нервное напряжение, легче переносится стресс, купируются мигренозные приступы, улучшается сон, повышается сопротивляемость организма к инфекциям за счет повышения местного иммунитета.

Регулярно занимаясь дыхательной гимнастикой можно значительно повысить жизненный тонус и улучшить качество жизни.

Это не панацея, но к этому стоит прислушаться.

Не занимайтесь самолечением, посоветуйтесь с врачом.

Ставьте лайк, пишите.

Источник

Крис тина  ·  30 марта 2017

5,9 K

Атмосферный воздух, который вдыхает человек, находясь вне помещения (или в хорошо вентилируемых помещениях), содержит 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В закрытых помещениях, заполненных людьми, процентное содержание углекислого газа в воздухе может быть несколько выше.

Выдыхаемый воздух содержит в среднем 16,3% кислорода, 4% углекислого газа, 79,7% азота (эти цифры приведены в перерасчете на сухой воздух, т. е. за вычетом паров воды, которыми всегда насыщен выдыхаемый воздух).

Состав выдыхаемого воздуха весьма непостоянен; он зависит от интенсивности обмена веществ организма и от объема легочной вентиляции. Стоит сделать несколько глубоких дыхательных движений или, напротив, задержать дыхание, чтобы состав выдыхаемого воздуха изменился.

Почему именно аргон – третий по доле газ в воздухе?

Researcher, Institute of Physics, University of Tartu

Аргон на Земле образуется практически исключительно за счет распада радиоактивного калия-40 путем электронного захвата. Калий-40, в свою очередь, существует в земной коре и магме изначально, с момента образования планеты. Калия-40 довольно много и он обладает очень большим периодом полураспада, поэтому недостатка аргона в атмосфере нет и не предвидится 🙂

Известное количество атомов калия, содержащегося в горных породах или водах, в течение заданного времени генерирует достаточно строго определенное количество атомов аргона. На этом основан широко распространенный калий-аргонный метод геохронологии горных пород.

То есть ответ: аргона довольно много по той причине, что есть достаточно вероятный процесс распада достаточно распространенного на Земле радиоактивного элемента с образованием аргона.

Прочитать ещё 1 ответ

Что такое закись азота и чем она опасна?

специалист по медицинской химии

Закись азота — она же веселящий газ или оксид диазота — бывает медицинской (применяется в качестве кратковременного наркоза в хирургии или редко при родах и только в смеси с кислородом для предотвращения гипоксии) и технический для двигателей внутреннего сгорания. Также может применяться как упаковочный инертный газ для свежих продуктов.

При вдыхании закись азота вызывает лёгкий наркотический эффект. Не взаимодействует с компонентами крови и через достаточное короткое время выводится в неизменном виде (10-15 минут). Смертельные случаи могут наступить при обильном вдыхании чистой закиси азота, поставляемой в баллонах. Особенно опасны эксперименты с газом для людей, страдающих гипоксией и проблемами газообмена в лёгких. Закись азота при вдыхании вызывает замещение кислорода самой закисью азота, что вызывает кислородное голодание и ишемическую смерть клеток головного мозга — он наиболее чувствителен к гипоксии.

Смерть не наступает мгновенно — сначала можно сознание потерять, упасть или отключиться. Если под рукой нет медицинского баллона с кислородом, то помочь можно попробовать искусственным дыханием и непрямым массажем сердца, чему учат на курсах элементарной первой помощи.

В целом закись азота считается относительно безопасной, но если у людей уже угнетён дыхательный центр мозга (наркотиками или алкоголем) — риск смертельного исхода увеличивается.

Прочитать ещё 1 ответ

Минеральная вода газированная или её насыщают газом?

В природе встречаются минеральные воды, насыщенные углекислым газом. Их называют гидрокарбонатными, поскольку растворенный в них CO2 соединяется с молекулами воды H2O и образует гидрокарбонат-ион (HCO3)–. Но чаще всего воду всё же газируют. Это делается для лучшей сохранности её свойств.

Если бы все растения одновременно перестали выделять кислород, то через какое время люди бы вымерли?

Командир отделения переносных зенитных ракетных комплексов (9к38 «Игла»)

Точно сказать сложно. В течение одного года растениями потребляется 200 миллиардов тонн углекислого газа и выделяется почти 150 миллиардов тонн кислорода. Всего же за миллионы лет фотосинтетической деятельности в воздушной оболочке Земли накопилось более миллиона миллиардов тонн кислорода – это число с пятнадцатью нулями.

Точный срок неизвестен, но точно известно, что человечество начнет задыхаться. И не только от недостатка кислорода, но и от отравления углекислым газом, количество которого в атмосфере будет стремительно нарастать. «Горная болезнь» спустится с трехтысячных горных вершин на равнины. Поначалу, грядущий кризис менее всего ощутит население Южной Америки, где сосредоточено более пятидесяти процентов всех тропических лесов, таежной Сибири или лесной зоны Канады. Но, все же, тренированные к недостатку кислорода альпинисты, водолазы, а также горные жители где-нибудь в Непале или Боливии продержатся дольше всех. Гибель от асфиксии, или удушья – вот таким бесславным может стать конец человечества. Конечно, человек будет бороться за свою жизнь. Ему придется настроить гигантские кислородные заводы и жить под герметичными стеклянными куполами. Баллончики же с кислородом превратятся в самую ходовую валюту. Сходный с этим сценарий кислородного голодания человечества когда-то описал писатель-фантаст Александр Беляев в своей книге «Продавец воздуха».

Прочитать ещё 2 ответа

Источник

Атмосферный воздух, который вдыхает человек, находясь вне помещения
(или в хорошо вентилируемых помещениях), содержит 20,94% кислорода, 0,03%
углекислого газа, 79,03% азота. В закрытых помещениях, заполненных людьми,
процентное содержание углекислого газа в воздухе может быть несколько выше.

Выдыхаемый воздух содержит в среднем 16,3% кислорода, 4% углекислого
газа, 79,7% азота (эти цифры приведены в перерасчете на сухой воздух, т. е. за
вычетом паров воды, которыми всегда насыщен выдыхаемый воздух).

Состав выдыхаемого воздуха весьма непостоянен; он зависит от
интенсивности обмена веществ организма и от объема легочной вентиляции. Стоит
сделать несколько глубоких дыхательных движений или, напротив, задержать
дыхание, чтобы состав выдыхаемого воздуха изменился.

Азот в газообмене не участвует, однако процентное содержание азота в видимом
воздухе на несколько десятых долей процента выше, чем во вдыхаемом. Дело в том,
что объем выдыхаемого воздуха несколько меньше, чем объем вдыхаемого, а потому
то же самое количество азота, распределяясь в меньшем объеме, дает больший
процент. Меньший объем выдыхаемого воздуха по сравнению с объемом вдыхаемого
объясняется тем, что углекислого газа выделяется несколько меньше, чем
поглощается кислорода (часть поглощаемого кислорода используется в организме на
обращение соединений, которые выделяются из организма с мочой и потом).

Альвеолярный воздух отличается от выдыхаемого большим процентом
некислоты и меньшим процентом кислорода. В среднем состав альвеолярного воздуха
таков: кислорода 14,2—14,0%, углекислого газа 5,5— 5,7%, азота около 80%.

 

Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем,
что последний содержит не только воздух из альвеол, но также из вредного
пространства. Состав же воздуха вредного пространства к концу вдоха не
отличается от атмосферного воздуха, так как он не вступает в газообмен с
кровью (рис. 54).

Рис. 54. Содержание кислорода и углекислого газа в различных
порциях выдыхаемого воздуха. 1 — воздух вредного пространства; 2 —
воздух вредного пространства, смешанный с воздухом альвеол; 3 —
альвеолярный воздух.

Определение состава альвеолярного воздуха важно для
понимания механизма газообмена в легких. Холден предложил простой метод для
определения состава альвеолярного воздуха. После нормального вдоха исследуемый
делает возможно более  глубокий выдох через трубку длиной 1—1,2 м и
диаметром 25 мм. Первые порции выдыхаемого воздуха,уходящие через трубку,
содержат   воздух вредного пространства; последние же порции,
остающиеся в трубке, содержат альвеолярный воздух. Для анализа в газоприемник
берут воздуха из той части трубки, которая находится ближе всего ко рту.

Состав альвеолярного воздуха несколько различается в зависимости от того,
произведён ли забор пробы воздуха для анализа на высоте вдоха или выдоха. Если
сделать быстрый, короткий и неполный выдох в конце нормального вдоха, то проба
воздуха отразит состав альвеолярного воздуха после наполнения легких дыхательным
воздухом, т. е. во время вдоха. Если же сделать глубокий выдох после нормального
выдоха, то проба отразит состав альвеолярного воздуха во время выдоха. Понятно,
что в первом случае процент углекислого газа будет несколько меньше, а процент
кислорода несколько больше, чем во втором. Это видно из результатов опытов
Холдена, который установил, что процент углекислого газа в альвеолярном воздухе
в конце вдоха составляет в среднем 5,54, а в конце выдоха — 5,72.

Таким оораэом, имеется сравнительно небольшое различие в содержании
углекислого газа в альвеолярном воздухе на вдохе и на выдохе: всего на 0,2—0,3%.
Это в большой степени объясняется тем, что при нормальном дыхании, как сказано
выше, ется всего, обновляется всего 1/7 объема воздуха в легочных альвеолах.
Относительное постоянство состава альвеолярного воздуха имеет большое
физиологическое значение, что выяснено ниже.

Источник

13 сентября 2014

Автор КакПросто!

Для дыхания человек использует воздух, содержащийся в атмосфере. Однако состав его существенно отличается от того, который он выдыхает. В частности, изменяется количество кислорода и углекислого газа.

Обыкновенный атмосферный воздух, пригодный для дыхания людей и остальных живых существ, представляет собой многокомпонентную смесь газов. Основную часть его объема составляет азот, доля которого достигает примерно 78%. На втором месте по этому показателю находится кислород, на долю которого приходится около 21% объема воздуха. Таким образом, суммарно эти два газа составляют около 99% объема воздуха.

Оставшиеся 1-1,5% объема большей частью приходятся на аргон и углекислый газ, а также незначительное количество других газов — неон, гелий, ксенон и другие. При этом доля углекислого газа в обыкновенном атмосферном воздухе, не подверженном какому-либо воздействию, чаще всего составляет около 0,3% по объему.

При этом состав воздуха, который получается в результате дыхательного процесса человека, существенно отличается от первоначального по содержанию ряда элементов. Так, известно, что в процессе дыхания организм человека потребляет кислород, поэтому закономерно, что его количество в выдыхаемом воздухе оказывается существенно меньше, чем во вдыхаемом. Если в первоначальном составе воздуха содержалось около 21% кислорода, то в воздухе на выдохе его будет лишь порядка 15,4%.

Другое значительное изменение, которое происходит с воздухом в процессе дыхания, касается содержания углекислого газа. Так, если в воздухе, попадающем в организм человека, его содержание обычно не превышает 0,3% объема, то в выходящем из организма воздухе объем углекислого газа достигает 4%. Это связано с тем, что в процессе функционирования человеческого организма его органы и ткани выделяют углекислый газ, который выводится в процессе дыхания. А вот содержание других газов в выдыхаемом воздухе практически не изменяется по отношению к первоначальному. Это связано с тем, что для человеческого организма они являются инертными, то есть никак не взаимодействуют с ним — не усваиваются и не выделяются.

При этом стоит иметь в виду, что воздух, выдыхаемый человеком, изменяет не только свой состав, но и некоторые физические характеристики. Его температура приближается к температуре человеческого тела, которая в норме составляет 36,6оС. Таким образом, если человек вдохнул холодный воздух, его температура повысится, а если горячий — понизится. Кроме того, выдыхаемый воздух обычно характеризуется более высоким уровнем влажности по сравнению с вдыхаемым.

Источники:

  • Химический состав воздуха и его гигиеническое значение

Статьи медицинского характера на Сайте предоставляются исключительно в качестве справочных материалов и не считаются достаточной консультацией, диагностикой или назначенным врачом методом лечения. Контент Сайта не заменяет профессиональную медицинскую консультацию, осмотр врача, диагностику или лечение. Информация на Сайте не предназначена для самостоятельной постановки диагноза, назначения медикаментозного или иного лечения. При любых обстоятельствах Администрация или авторы указанных материалов не несут ответственности за любые убытки, возникшие у Пользователей в результате использования таких материалов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Источник

1. Газообмен в легких и тканях

Значение дыхания

Дыхание — жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. В процессе дыхания человек поглощает из окружающей среды кислород и выделяет углекислый газ.

Почти все сложные реакции превращения веществ в организме идут с обязательным участием кислорода. Без кислорода невозможен обмен веществ, и для сохранения жизни необходимо постоянное поступление кислорода. В клетках и тканях в результате обмена веществ образуется углекислый газ, который должен быть удален из организма. Накопление значительного количества углекислого газа внутри организма опасно. Углекислый газ выносится кровью к органам дыхания и выдыхается. Кислород, поступающий в органы дыхания при вдохе, диффундирует в кровь и кровью доставляется к органам и тканям.

В организме человека и животных нет запасов кислорода, и поэтому непрерывное поступление его в организм является жизненной необходимостью. Если человек в необходимых случаях может прожить без пищи более месяца, без воды до 10 дней, то при отсутствии кислорода необратимые изменения наступают уже через 5-7 мин.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, углекислого газа 4% (табл. 8).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%) и большое количество углекислого газа (5,2%).

Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Таблица 8. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха
Таблица 8. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давление и напряжение газов

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. Переход газов из воздуха в жидкость и из жидкости в воздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости. Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, является смесью газов. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм; азота — 79,03% от 760 мм, т. е. около 600 мм; углекислого газа в атмосферном воздухе мало — 0,03%, поэтому и парциальное давление его составляет 0,03% от 760 мм — 0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, то газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100-105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 60 мм рт. ст., поэтому в легких кислород из альвеолярного воздуха переходит в кровь.

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением.

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в кровь и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам великого русского физиолога Ивана Михайловича Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от величины поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. При глубоком вдохе альвеолы растягиваются, и их поверхность достигает 100-105 м2. Так же велика и поверхность капилляров в легких. Есть, и достаточная, разница между парциальным давлением газов в альвеолярном воздухе и напряжением этих газов в венозной крови (табл. 9).

Таблица 9. Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови
Таблица 9. Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови

Из таблицы 9 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110 — 40 = 70 мм рт. ст., а для углекислого газа 47 — 40 = 7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 мл кислорода в 1 мин. Человеку в покое нужно примерно 25-30 мл кислорода в 1 мин. Следовательно, разность давлений кислорода в 70 мм рт. ст, достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому при разности давлений в 7 мм рт. ст., углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и химически связанном. И кислород и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода — гемоглобин крови. 1 г гемоглобина связывает 1,34 мл кислорода. Гемоглобин обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При таких условиях 97% гемоглобина крови связывается с кислородом. Кровь приносит к тканям кислород в виде оксигемоглобина. Здесь парциальное давление кислорода низкое, и оксигемоглобин — соединение непрочное — высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненно важное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом. Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар «Зенит», на борту которого находились три воздухоплавателя, достиг высоты 8000 м. Когда шар приземлился, то в живых остался только один человек. Причиной гибели людей было резкое снижение парциального давления кислорода на большой высоте. На больших высотах (7-8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток в кислороде, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м обычно требует пользования особыми кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется дыхание, увеличивается количество эритроцитов в крови за счет усиленного образования их в кроветворных органах и поступления из депо крови. Кроме того, усиливаются сердечные сокращения, что приводит к увеличению минутного объема крови.

Для тренировки широко применяют барокамеры.

Углекислый газ переносится кровью в виде химических соединений — бикарбонатов натрия и калия. Связывание углекислого газа и отдача его кровью зависят от его напряжения в тканях и крови.

Кроме того, в переносе углекислого газа участвует гемоглобин крови. В капиллярах тканей гемоглобин вступает в химическое соединение с углекислым газом. В легких это соединение распадается с освобождением углекислого газа. Около 25-30% выделяемого в легких углекислого газа переносит гемоглобин.

Когда делала прическу мне советовали в салоне купить Ринфолтил, нашла у этих ребят. витамины.com.ua.

Источник