Какой дисахарид содержится в кондитерских изделиях
Ингредиенты кондитерских изделий
В этом разделе речь пойдет в основном об ингредиентах, используемых для сахарных кондитерских изделий. Мы уже привели некоторую классификацию продукции, выделив шоколадные изделия, сахарные и мучные кондитерские изделия, но многие ингредиенты для всех трех групп являются общими. Основные ингредиенты шоколада мы уже рассмотрели выше.
Продукты, перечисленные в группе «сахарные кондитерские изделия», зачастую используют в качестве начинки для шоколада. В наше время в коробки шоколада иногда укладывают неглазированные конфеты, а также конфеты с красивой глазированной начинкой пастельных цветов.
Все чаще в шоколадных и других кондитерских батончиках используют вафли, иногда — печенье. В этом случае важнейшим фактором оказывается совместимость используемых ингредиентов (см. раздел «Кондитерские батончики с начинкой»).
Химия углеводов
Углеводы являются большой группой химических веществ, часто встречающихся в растительном и животном мире; их общая химическая формула — Сх(H20) y где х, как правило, кратно 6.
Химическая формула сахара — С12 (H20) 11, декстрозы — С6(Н20)6, а крахмала — {С6(Н20)5} n.
Каждое из этих веществ представляет одну из трех основных групп — моносахариды (декстроза, фруктоза), дисахариды (сахароза, лактоза, мальтоза) и полисахариды (крахмал, клетчатка).
Моносахариды — это сахара, которые не распадаются в процессе кислотного гидролиза на более простые сахара; с точки зрения кондитерского производства наиболее важными являются декстроза и фруктоза, называемые также гексозой. К сожалению, у каждого из этих Сахаров есть синонимичное название, глюкоза и левулоза соответственно, а английское слово glucose часто ассоциируется с кондитерской патокой (глюкозным сиропом), которая, хотя и содержит декстрозу, включает также другие сложные углеводы.
Декстроза и фруктоза являются составляющими инвертного сахара и образуются в результате инвертирования сахара (сахарозы). Декстроза и фруктоза, как известно, являются изомерами, то есть имеют одинаковую химическую формулу, но различную молекулярную структуру. Характерным свойством натуральных Сахаров является то, что при растворении в воде они изменяют плоскость проходящего сквозь раствор поляризованного света. Гексозы, декстроза и фруктоза поворачивают эту плоскость в противоположных направлениях: декстроза — вправо, а фруктоза (левулоза) — влево. На основе этих фактов и осуществляется анализ кондитерских изделий, содержащих разные сахара.
Сахара под воздействием слабых окислителей способны окисляться до соответствующих кислот, и это свойство также учитывается при анализе состава сахара, когда его добавляют в раствор Фелинга (пентагидрат сульфата меди, тартрат и гидроксид натрия) до тех пор, пока голубые соли меди не превратятся в красный оксид меди. Сахара, вступающие в такую реакцию с раствором Фелинга, называют редуцирующими. Это свойство подтверждает альдегидную структуру некоторых Сахаров.
Дисахариды — это сахара, в которых связаны два моносахарида, и связь может строиться как через альдегидную группу, так и иным способом. В случае, когда связующим звеном является неальдегидная группа, сахар обладает редуцирующими свойствами; к примеру, сахароза — это нередуцирующий сахар, тогда как мальтоза и лактоза — это редуцирующие сахара.
Технологические сложности, связанные с сахаром, мы рассмотрим в разделе, посвященном глюкозному сиропу. В настоящее время для определения состава сахарных смесей и контроля за производством используются специальные аналитические технологии — например жидкостная хроматография (HPLC).
Некоторые дисахариды легко разлагаются под воздействием разбавленных кислот и некоторых ферментов, на чем и основано производство инвертного сахара из сахарозы-:
С12H22Oll+H2O—> C6H12O6+C6H12O6
иивертаза декстроза фруктоза
Инвертирование происходит в рамках многих кондитерских технологий с преобладанием кислотной среды — например в производстве плодово-ягодного желе.
Все полисахариды имеют больший молекулярный вес, чем моно- и дисахариды, а также сложную структуру.
В кондитерской промышленности наиболее важным веществом этой группы является крахмал; натуральный крахмал содержится в кукурузе, рисе, пшенице, картофеле и многих других растениях. Очищенный крахмал используется для изготовления конфетных начинок, а также (в различных модифицированных формах) в качестве ингредиента. С помощью кислот, особых ферментов или сочетания тех и других может производиться гидролизованный крахмал (ниже мы рассмотрим разнообразные типы глюкозных сиропов, которые производятся таким способом). Модифицированный крахмал все шире применяется в кондитерской промышленности, особенно для производства желе и других аналогичных изделий.
Еще одним производным крахмала является декстрин, используемый для приготовления кондитерской глазури, а также для выпуска клея.
Более подробные сведения о молекулярном строении и химических свойствах углеводов можно найти в книгах по органической химии, но и в нашей работе мы по мере необходимости будем касаться научных основ конкретных Сахаров, крахмалов и производных от них соединений.
Углеводы, применяемые в кондитерской промышленности
Сахар (сукроза, сахароза). Сахар является основным ингредиентом кондитерских изделий и шоколада; об истории и развитии производства тростникового сахара мы уже упоминали.
Свекловичный сахар появился значительно позже, и его производство стало выгодным не сразу, а лишь после многих неудачных попыток. Сахарную свеклу начали выращивать в средиземноморском регионе, и первым извлек из этого растения некоторое количество сахара немецкий химик Маргграф (Marggraf, 1747).
Промышленное применение этой технологии начало развиваться во времена Наполеона, когда во Франции был издан указ о развитии производства свекловичного сахара (с целью положить конец британской монополии на тростниковый сахар), однако из-за разгрома наполеоновской армии, а также из-за несогласия колониальных стран оно пришло в упадок. В Англии заслуживающее упоминания производство свекловичного сахара появилось только в 1912 г. Во время второй мировой войны Британия была вынуждена производить сахар в основном из сахарной свеклы.
По поводу преимуществ тростникового и свекловичного сахара существуют значительные разногласия, и когда-то кондитеры и производители джема, узнав о том, что сахар произведен из сахарной свеклы, даже отказывались его использовать. В действительности все зависит от степени очистки сахара, и рафинированный сахар высокой очистки, независимо от того, тростниковый он или свекловичный, представляет собой практически чистую, порядка 99,9 %, сахарозу. Благодаря современным технологиям рафинированный свекловичный сахар высокой очистки практически невозможно отличить от тростникового, однако при сравнении нерафинированных Сахаров их различие весьма заметно. Нерафинированный тростниковый сахар обладает приятным вкусом и запахом, тогда как нерафинированный свекловичный сахар, будучи недостаточно чистым, обладает неприятными вкусо- ароматическими характеристиками.
Даже в наше время иногда случается, что в ‘продажу поступает свекловичный сахар, уступающий по качеству хорошо очищенному тростниковому сахару. Сироп, который варят из такого свекловичного сахара, имеет слегка заметный запах, и кроме того, для него характерно сильное пенообразование, что крайне нежелательно при производстве джема и кондитерских изделий. Это связано с присутствием небольших количеств белков и продуктов их разложения, сапонинов и растительных клейких веществ, которых в неочищенном тростниковом сахаре быть практически не может; напротив, в недостаточно рафинированном тростниковом сахаре может содержаться небольшое количество воска сахарного тростника, который действует как ингибитор пенообразования. Чистота сахара и его пенообразование также связаны с зольностью; низкая зольность говорит о хорошей очистке.
Методы определения индекса пенообразования и его значение при производстве пористых кондитерских изделий мы рассмотрим ниже.
Тростниковый сахар выращивается во всех тропических странах, особенно там, где много плодородных земель и имеется возможность орошения. Крупнейшими его производителями являются страны Центральной Америки и Карибских островов; в последние годы значительное количество тростникового сахара производится и в Австралии с Океанией.
Сахарная свекла выращивается в регионах с умеренным климатом, и крупными ее производителями являются все европейские страны, включая страны бывшего СССР. Развитие производства свекловичного сахара связано с политическими причинами, так как оно дает возможность не зависеть от тропических стран-поставщиков сахара, а в военное время — не испытывать трудностей от дефицита сахара в случае блокады.
В США производится как тростниковый, так и свекловичный сахар — в южных штатах и на Гавайях выращивают сахарный тростник, а в северных — сахарную свеклу. Сахарную свеклу в порядке эксперимента начали выращивать в штатах Миннесота и Северная Дакота еще в 1880-е гг., но реально ее промышленное производство началось только с 1920 г.
Производство сахара
О производстве сахара — ниже мы представим вкратце лишь основные технологические процессы.
Тростниковый сахар. Сахарный тростник — это гигантская тропическая трава с диаметром стебля 2,5-5 см; растение созревает за период от 12 до 18 месяцев. Стебель имеет твердую оболочку, внутри которой находится мякоть; свежесрезанный тростник содержит от 14 до 17% сахара. После сбора тростник отправляют на фабрику, где его измельчают, а затем обрабатывают под давлением и промывают водой с целью извлечь максимальное количество сахара. Полученный таким образом сок содержит до 20% сахара. Отходы — жом сахарного тростника, называемый багассой, — как правило, используют в качестве котельного топлива.
Извлеченный сок подвергают известкованию, благодаря которому примеси выпадают в осадок; затем чистый сок сгущают выпариванием до образования кристаллов сахара. После этого полученную массу центрифугируют, в результате чего получается нерафинированный сахар и остаточная патока (так называемая тростниковая меласса).
Как правило, нерафинированный сахар экспортируется в регионы его потребления, где и проходит окончательное рафинирование. Заключается оно в многократном промывании и рекристаллизации.
Тростниковая патока (сироп) и меласса могут использоваться в качестве ароматизаторов, тогда как меласса, полученная из сахарной свеклы, для приготовления пищевых продуктов не пригодна.
Свекловичный сахар. Сахарная свекла высевается ранней весной (точное время сева зависит от сезонных заморозков). Сбор урожая начинается в сентябре, но в некоторых климатических регионах он продолжается и зимой. Сбор корнеплодов механизирован, и после поступления на сахарный завод плоды тщательно отмывают от прилипшей земли. Затем свеклу нарезают тонкой стружкой и направляют в диффузионный аппарат непрерывного действия. В нем свекольная стружка промывается водой; при этом наиболее свежая еще не насыщенная сахаром вода в первую очередь взаимодействует с той частью стружки, из которой уже вымыта большая часть сока. Сахар, поступающий в раствор, вымывается из клеток корнеплода благодаря явлению осмоса, и таким образом раствор сахара становится все более концентрированным. Раствор проходит известкование, фильтруется, сгущается и проходит кристаллизацию (применяемые технологические процессы схожи с производством тростникового сахара).
Из сахарной свеклы невозможно производить коричневый сахар (бастр); получаемая меласса не пригодна в пищу человеку и идет на корм скоту или сбраживается при производстве спирта.
Следует еще раз подчеркнуть, что правильно рафинированный свекловичный сахар невозможно отличить от тростникового, и поэтому и в промышленности, и в домашнем хозяйстве может использоваться как тростниковый, так и свекловичный сахар.
Продожение раздела
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 декабря 2019;
проверки требуют 4 правки.
Дисахариды (от др. греч. δύο — два и σάκχαρον — сахар) — органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.
Строение молекул[править | править код]
Молекулы дисахаридов состоят из двух остатков моносахаридов, соединённых друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой) — гликозидной связи. Общая формула дисахаридов, как правило, C12H22O11.
Примеры дисахаридов[править | править код]
- Лактоза — состоит из остатков глюкозы и галактозы.
- Сахароза — состоит из остатков глюкозы и фруктозы.
- Мальтоза — состоит из двух остатков глюкозы.
Физические свойства[править | править код]
Дисахариды — твёрдые, кристаллические вещества, от слегка белого до коричневатого цвета, хорошо растворимые в воде и в 45 — 48°-градусном спирте, плохо растворимы в 96-градусном спирте, имеют оптическую активность; сладкие на вкус[1].
Химические свойства[править | править код]
- При гидролизе дисахариды расщепляются на составляющие их моносахариды за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования дисахаридов из моносахаридов.
- При конденсации дисахаридов образуются молекулы полисахаридов.
По химическим свойствам дисахариды можно разделить на две группы:
- восстанавливающие;
- не восстанавливающие.
К первой группе относятся: лактоза, мальтоза, целлобиоза.
Ко второй: сахароза, трегалоза[2].
Восстанавливающие (редуцирующие) дисахариды[править | править код]
В данных дисахаридах один из моносахаридных остатков участвует в образовании гликозидной связи за счёт гидроксильной группы чаще всего при С-4 или С-6, реже при С-3. В дисахариде имеется свободная полуацетальная гидроксильная группа, вследствие чего сохраняется способность к раскрытию цикла. Возможностью осуществления цикло-оксо-таутометрии (кольчато-цепной) обусловлены восстановительные свойства таких дисахаридов и мутаротация их свежеприготовленных растворов[3].
Лактоза[править | править код]
Лактоза (от лат. lac — молоко) C12H22O11 — углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул β- глюкозы и β-галактозы, которые соединены между собой β(1→4)-гликозидной связью. Водные растворы лактозы мутаротируют. Вступает в реакцию с фелинговой жидкостью только после кипячения в течение 15 минут[4] и реактивом Толленса, реагирует с фенилгидразином, образуя озазон. Лактоза отличается от других дисахаридов отсутствием гигроскопичности — она не отсыревает. Это её свойство имеет большое практическое значение в фармации: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующееся лекарство, то берут молочный сахар; если же взять другой сахар, то он быстро отсыреет и легко гидролизующееся лекарственное вещество быстро разложится. Значение лактозы очень велико, так как она является важным питательным веществом, особенно для растущих организмов человека и млекопитающих[5].
Мальтоза[править | править код]
Мальтоза (от лат. maltum — солод) C12H22O11 — дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Мальтоза относится к восстанавливающим сахарам, восстанавливает фелингову жидкость, даёт гидразон и озазон и может быть окислена в одноосновную мальтобионовую кислоту, которая при гидролизе даёт α-D-глюкозу и D-глюконовую кислоту. Мальтоза была синтезирована действием мальтазы (энзима дрожжей) на концентрированные растворы глюкозы. Для неё характерно явление мутаротации, сильно вращает плоскость поляризации влево[5]. Мальтоза менее сладка, чем например сахароза, однако, она более чем в 2 раза слаще лактозы.
Целлобиоза[править | править код]
Целлобиоза 4-(β-глюкозидо)-глюкоза — дисахарид, состоящий из двух остатков глюкозы, соединённых β-гликозидной связью; основная структурная единица целлюлозы. Высшие животные не в состоянии усваивать целлюлозу, так как не обладают разлагающим её ферментом. Однако улитки, гусеницы и черви, содержащие ферменты целлобиазу и целлюлазу, способны расщеплять (и тем самым утилизовать) содержащие целлобиозу растительные остатки. Целлобиоза, как и лактоза, имеет 1→4 β-гликозидную связь и является восстанавливающим дисахаридом, но в отличие от лактозы при полном гидролизе даёт только β-D-глюкозу[6].
Невосстанавливающие (нередуцирующие) дисахариды[править | править код]
Невосстанавливающие дисахариды не имеют ОН-группы ни при одном аномерном центре, в результате чего, они не вступают в реакции с фелинговой жидкостью и реактивом Толленса.
Сахароза
Трегалоза
Нахождение в природе[править | править код]
Дисахариды широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и других соединений. Многие дисахариды получают из природных источников, так, например, для сахарозы основными источниками служат сахарная свёкла и сахарный тростник.
Биологическая роль[править | править код]
- Энергетическая — дисахариды (сахароза, мальтоза) служат источниками глюкозы для организма человека, сахароза к тому же важнейший источник углеводов (она составляет 99,4%, от всех получаемых организмом углеводов), лактоза используются для диетического детского питания.
- Структурная — целлобиоза имеет важное значение для жизни растений, так как она входит в состав целлюлозы.
Примечания[править | править код]
- ↑ [www.xumuk.ru/bse/877.html XuMuK.ru — Дисахариды — Большая Советская Энциклопедия]. Дата обращения 20 апреля 2013.
- ↑ А. А. Петров, Х. В. Бальян, А. Т. Трощенко — Органическая химия. Под ред. А. А. Петрова. Изд. 3-е, испр. и доп. Учебник для вузов. М.: «Высш. школа», 1973. 623 с. с ил.
- ↑ Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 2-е изд., перераб. и доп. — М.: Медицина, 1991. — 528 с. — (Учебная литература для студентов медицинских институтов). -ISBN 5-225-00863-1
- ↑ Полюдек-Фабини Р., Бейрих Т. -Органический анализ — Перевод с нем. — Л.: Химия, 1981. — 624 с.
- ↑ 1 2 Курс органической химии. Степаненко Б.Н. Учебник для мед. ин-тов. Изд. 2-е, перераб. и доп. М., «Высшая школа», 1974. 440 с. с ил.
- ↑ Сорочинская Е.И. — Биоорганическая химия. Поли- и гетерофункциональные соединения. Биополимеры и их структурные компоненты. СПб.: Изд-во СПб-госуниверситета, 1998. — 148 с
Литература[править | править код]
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов |