Какое влияние оказывает углерод на свойства литейного чугуна

Какое влияние оказывает углерод на свойства литейного чугуна thumbnail

Микроструктура чугунов (табл. 1) зависит от скорости охлаждения металла: при быстром охлаждении будет белый чугун (углерод находится в химически связанном состоянии в виде цементита и ледебурита), а при медленном охлаждении будет серый чугун (углерод находится в виде графита).

Табл. 1. Марки и механические свойства чугуна разлиных типов.

ГруппаМарка чугунаσВ, МПаНВδ
серыеСЧ10100120…150
СЧ15150130…241
СЧ35350179…290
ВысокопрочныеВЧ35350140…17022
ВЧ40400140…20215
ВЧ1001000270…3602
КовкиеКЧ30-63001636
КЧ33-83301638
КЧ37-1237016312
КЧ63-26302692

Кремний Si способствует графитизации чугуна, и улучшает его литейные свойства. В серых чугунах содержится 0,8 …4,5 % Si.

Марганец Mn способствует отбеливанию чугуна, но содержание Mn до 1,2% полезно, т.к. увеличиваются твердость и прочность чугуна.

Фосфор Р повышает жидкотекучесть чугуна, поэтому допустимо его содержание до 0,4%, но в ответственных чугунных отливках содержится фосфора менее 0,15%, т.к. с ростом содержания его увеличивается хрупкость чугуна.

Сера S затрудняет графитизацию, увеличивает хрупкость и ухудшает жидкотекучесть чугуна, поэтому серы в чугунах должно быть не более 0,1%.

Серые чугуны делятся на модифицированные, высокопрочные и ковкие (табл. 2).

В серых чугунах графит имеет пластинчатую форму, в высокопрочных — шаровидную, а в ковких — хлопьевидную.П римеры обозначения чугунов:

Формирование структуры чугуна происходит при затвердевании отливки. Основными факторами, влияющими на структурообразование чугуна, являются его химический состав (см. табл. ниже) и скорость охлаждения отливки в форме.

Табл. 2 — Влияние химических элементов на свойства чугуна

Серый чугунВысокопрочный чугунКовкий чугун
Углерод
Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугунаУвеличенное содержание углерода улучшает литейные свойства чугунаУглерод — основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева
Кремний
Кремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердостьС повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания — уменьшаются предел прочности при растяжении и относительное удлинениеДля ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются
Марганец
Марганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении — снижаются. Марганец увеличивает усадку сплаваС повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном — 1,0%
Магний
Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния — 0,04-0,08%
Сера
Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава, считается вредной примесью, придает чугуну красноломкость (образование трещин при высоких температурах), препятствует выделению графитаЧем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойстваСодержание серы в ферритном ковком чугуне, модифицированном алюминием, может быть повышено до 0,2 %; при этом механические свойства возрастают за счет улучшения формы графита. Определяющее влияние на механические свойства чугуна оказывает отношение содержания марганца и серы, которое должно быть в пределах 0,8-3,0
Фосфор
Фосфор на процесс графитизации углерода влияет слабо, но повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. хрупкостьФосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава
Никель
Никель — легирующий элемент, благоприятно влияет на выравнивание механических свойств в отливках с различной толщиной стенок, повышает твердость на 10 НВ. С увеличением содержания никеля возрастает коррозионная стойкость и улучшается обрабатываемость сплаваНикель влияет на тепло- и электропроводность, а также на коррозионную стойкость и жаростойкость сплава. С увеличением содержания никеля эти свойства повышаютсяНикель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава
Хром
Хром — карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углеродаС увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплаваХром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов
Молибден
Молибден — легирующий элемент; замедляет процесс графитизации углерода и способствует карбидообразованию. С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износуМолибден способствует измельчению перлита и графитовых включений, увеличивает предел прочности на 3-7 кгс/мм2 при содержании молибдена 0,5%; замедляет процесс графитизации углерода
Медь
Медь способствует графитизации углерода, увеличивает жидкотекучесть, повышает прочность и твердость сплаваПри содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть — до 50 % и соответственно при 2% меди — до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графитаМедь способствует графитизации углерода и увеличивает содержание в сплаве перлита

Небольшие количества множества элементов могут попасть в состав литейного чугуна и оказывать заметное воздействие на структуру и свойства отливок. Добавки некоторых из этих элементов производят специально, в то время как другие представляют собой примеси, привнесенные в металл из шихты. Некоторые из этих элементов оказывают положительное воздействие, особенно в сером чугуне, в то время как другие оказывают отрицательное воздействие и попадания их с расплав следует избегать. В таблице перечислены обычные источники этих элементов, часто встречающиеся уровни их содержания и основное воздействие на чугун. Результаты применения некоторых элементов в качестве основных легирующих (например, хром), в таблице не указаны.

ЭлементОбычный источникОбычное содержание (%)Воздействие на литейный чугун
Алюминий AlСтальной лом, раскисленный Al, модификаторы, ферросплавы, добавки алюминияДо 0,03Способствует образованию водородных газовых пор в тонких сечениях при содержании Al выше 0,005%. Нейтрализует азот. Способствует образованию дросса. При Al свыше 0,08% оказывает отрицательное воздействие на форму шаровидных включений графита. Может быть нейтрализован церием. Сильный стабилизатор графита.
Сурьма SbСтальной лом, эмалированный лом, корпуса подшипников, добавки сурьмыДо 0,02Сильный стабилизатор перлита и карбидов. Препятствует образованию шаровидного графита в отсутствие РЗМ.
Мышьяк
As
Чугун, стальной ломДо 0,05Сильный стабилизатор перлита и карбидов. Улучшает форму шаровидного графита.
Барий
Ba
Модификаторы с бариемДо 0,003Усиливает образование центров графитизации графита и увеличивает продолжительность действия модификатора. Снижает тенденцию к отбелу и способствует образованию графита.
Висмут
Bi
Специальные добавки, покрытие литейной формы, содержащее висмутСвыше 0,01Способствует образованию отбела и нежелательных форм графита. Увеличивает число включений шаровидного графита в ВЧ, содержащем РЗМ (церий). Чрезмерное число шаровидных включений графита может спровоцировать усадку.
Бор
B
Эмалированный лом, специальные добавки (например, FeB).До 0,01Свыше 0.001 % способствует образованию карбидов особенно в ВЧ. 0,002 % B улучшает способность к отжигу ковкого чугуна.
Кальций
Ca
Ферросплавы, модификаторыДо 0,01Улучшает степень шаровидности включений графита. Снижает тенденцию к отбелу и способствует образованию графита.
Церий
Ce
Большинство магниевых сплавов, мишметалл или другие источники РЗМДо 0,02Как правило, не используется в сером чугуне. Подавляет отрицательное воздействие нежелательных элементов в ВЧ. Улучшает степень шаровидности графита. Стабилизатор карбидов из-за сегрегации.
Хром
Cr
Легированная хромом сталь, некоторые чугуны, феррохромДо 0,3Способствует образованию отбела и перлита. Повышает прочность. Образует скопления карбидов в ВЧ при содержании выше 0,05 %.
Кобальт
Co
Инструментальная стальДо 0,02Не оказывает существенного воздействия на чугун.
Медь
Cu
Медная проволока, сплавы на основе меди, стальной лом, специальные добавки меди.До 0,5Способствует образованию перлита. Повышает прочность. Ослабляет процесс ферритизации в ВЧ. Отсутствие вредного воздействия.
Водород
H
Сырые огнеупоры, материалы литейных форм и влажные добавки.Образует подповерхностные газовые поры. В незначительной степени способствует образованию отбела. Способствует отбелу при недостатке марганца для нейтрализации серы. Способствует образованию крупных включений графита.
Свинец
Pb
Старые краски, некоторые виды эмалей, автоматная сталь, припой, отложения на бензиновом двигателе.До 0,005Способствует образованию нежелательных структур графита в сером чугуне и существенно снижает прочность при содержании > 0,004 %. Способствует образованию перлита и карбидов. Вызывает образование дегенеративных форм шаровидных включений графита. Отрицательное воздействие на графит в ВЧ нейтрализуется РЗМ (церием).
Магний
Mg
Добавки магний содержащих модификаторов.0,03 — 0,08Способствует образованию шаровидных включений графита и стабилизирует карбиды в ВЧ. Не используется в серых чугунах.
Марганец
Mn
Большинство чугунов, стальной лом, добавки кускового или брикетированного ферромарганца.0,2 — 1,0Нейтрализует серу, образуя MnS. Способствует образованию перлита. Образует скопления карбида в ВЧ. При высоком содержании способствует образованию газовых пор в сочетании с высоким содержанием серы.
Молибден
Mo
Рафинированный чугун, легированная сталь, добавки ферромолибденаДо 0,1Способствует образованию перлита. Повышает прочность. Может способствовать формированию усадки и образованию карбидов.
Никель
Ni
Никелированный лист, стальной лом, специальные чугуны. Сплав Ni/MgДо 0,5В небольших количествах слабое воздействие на расплав. Графитизирующий эффект в больших количествах.
Азот
N
Кокс, науглероживатели, связующие, стальной лом, добавки азотированного ферромарганца.До 0,015Способствует формированию компактных структур графита. Способствует образованию перлита. Повышает прочность. Высокое содержание приводит к образованию трещин в толстых сечениях. Может быть нейтрализован Al, Ti и Zr. Оказывает незначительное влияние на ВЧ.
Фосфор
P
Фосфористый чугун и лом, добавки FeP.До 0,1Повышает углеродный эквивалент. Повышает жидкотекучесть. Формирует фосфидную эвтектику. Оказывает отрицательное воздействие на ВЧ при содержании > 0,05 %. При содержании > 0,04 % вызывает образование пригара.
Кремний
Si
Сплавы ферросилиция, стальной лом, чугун.0,8-4,0Способствует графитизации, снижает отбел, стабилизирует феррит, повышает литейные свойства.
Сера
S
Кокс, науглероживатели, чугун, чугунный лом, добавки сульфида железа.До 0,15 (серый чугун)Оказывает сильное отрицательное воздействие на структуры и свойства, если не сбалансирована марганцем. Повышает чувствительность СЧ к модифицированию. Может требовать увеличения навесок Mg в ВЧ. Содержание серы в ВЧ не должно превышать 0,03 %.
Стронций
Sr
Стронций содержащие модификаторыДо 0,003Способствуют формированию графита в СЧ и ВЧ. В значительной степени снижает отбел в сером чугуне.
Теллур
Te
Автоматная медь, покрытия литейной формы, остатки от проб при термическом анализе.До 0,003Сильный стабилизатор карбидов. Вызывает образование многих нежелательных форм графита. Влияние Те выражено при содержании с 0,0003 %. Влияние уменьшается в сочетании Те с Mg и Ce в ВЧ
Олово
Sn
Припой, жестяной лом, бронзовые компоненты, добавки олова.До 0,15В значительной степени способствует образованию перлита. Повышает прочность. Охрупчивает ВЧ при содержании > 0,08%. Не отмечено других вредных проявлений.
Титан
Ti
Некоторые чугуны, некоторые краски и эмали, возврат ЧВГ, добавки титана и ферротитана.До 0,10Нейтрализует азот в сером чугуне. Вызывает формирование водородной пористости в присутствии алюминия. Вызывает образование переохлажденного графита в сером чугуне. Подавляет формирование шаровидных включений графита при производстве ЧВГ.
Вольфрам
W
Быстрорежущая инструментальная стальДо 0,05Редко присутствует в существенных объемах. Средний по силе стабилизатор перлита.
Ванадий
V
Лом, инструментальной стали, некоторые чугуны, добавки феррованадия.До 0,10Вызывает образование отбела. Измельчает включения пластинчатого графит. Существенно повышает прочность.

Предлагаем услуги по оптимизации геометрии разливочной оснастки с целью обеспечения повышения коэффициента использования металла и снижения осевой пористости слитков

подробнее

Источник

Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси ( Si, Mn, P, S) , а иногда и легирующие элементы, затвердевает с образованием эвтектики. Чугун — важнейший первичный продукт чёрной металлургии (см. также Доменное производство), используемый для передела при производстве стали и как компонент шихты при вторичной плавке в чугунолитейном производстве. Чугун вторичной плавки — один из основных конструкционных материалов; Применяется как литейный сплав. Широкому использованию чугуна в машиностроении способствуют его хорошие литейные и прочностные свойства (по прочности некоторые чугуны лишь немногим уступают углеродистой стали; см. Модифицированный чугун}. В современном машиностроении на долю деталей из чугуна приходится около 75% от общей массы отливок.

Углерод оказывает большое влияние на свойства чугунов. Он может находиться в чугуне в виде цементита или графита или одновременно в виде цементита и графита. Чугун, в котором практически ,весь углерод находится в виде цементита, назы­вается белым, а если в виде графита—серым чугуном.

Содержание углерода и форма выделения графита в серых чугунах также оказывают значительное влияние на их свой­ства. Поскольку графит обладает весьма малой прочностью, то в первом приближении графитовые включения в микрост­руктуре чугуна можно считать пустотами. Чем больше угле­рода в чугуне в виде графита, тем больший объем будут за­нимать пустоты и тем, следовательно, ниже механические свойства чугуна.

Кремний способствует графитизации чугуна и, следова­тельно, оказывает особенно большое влияние на его свойства. В чугунах обычно содержится 1,2…3,5% Si. Изменяя сум­марное содержание углерода и кремния в чугуне, можно при прочих равных условиях получить различную структуру и свой­ства чугуна.

Марганецпрепятствует процессу графитизации и повышает способность чугуна к сохранению углерода в форме цементита, образуя карбиды. В чугунах содержится 1 … 1,5 % Мn.

Сера является вредной примесью; она ухудшает литейные свойства (понижает жидкотекучесть) и способствует отбелива­нию чугуна. Содержание серы в чугуне для мелкого литья до­пускается не выше 0,08%, для крупного литья—не выше 0,10… 0,12 %. Вредное влияние серы на свойства чугуна в зна­чительной степени нейтрализуется марганцем, образующим хи­мическое соединение МnS, большая часть которого переходит в шлак.

Фосфор увеличивает жидкотекучесть чугуна благодаря об­разованию легкоплавкой тройной эвтектики FезР—FезС—Fе7, имеющей температуру плавления 950 °С. После затвердевания фосфитная эвтектика повышает твердость и износостойкость чугуна. Фосфор в чугунах содержится до 0,5 %.

Кроме постоянных примесей, в чугун вводят специальные добавки для придания чугунам определенных свойств. Иногда чугуны выплавляют в доменных печах из руд, содержащих хром, никель и другие легирующие компоненты. Такие чугуны называют природнолегированными. Влияние легирующих эле­ментов на свойства чугунов определяется главным образом их отношением к углероду. Графитообразующие элементы способ­ствуют получению хорошо обрабатываемых чугунов, а карбидообразующие—получению отбеленных чугунов, плохо под­дающихся обработке режущим инструментом.

Источник

В.А. Изосимов, Р.Г. Усманов, М.Н. Канафин
(ООО «НПП «Технология», г. Челябинск)

Значительным достижением в развитии машиностроения является разработка способа получения высокопрочного чугуна с шаровидным графитом. В этом материале хорошо сочетаются высокие физико-механические и технологические свойства. В результате многочисленных исследований и большого производственного опыта установлено, что высокопрочный чугун (ВЧ) во многих случаях может успешно применяться взамен серого и ковкого чугуна, углеродистой и легированной стали.
Замена обычного серого чугуна высокопрочным позволяет значительно снизить вес отливок за счет уменьшения толщины их сечений, при сохранении и даже повышении эксплуатационной надежности.
Наиболее целесообразным в технико-экономическом соотношении является применение высокопрочного чугуна взамен стали для тонкостенных литых деталей сложной конфигурации. Этот чугун по сравнению со сталью обладает в 1,5-2,0 раза большей жидкотекучестью, не склонен к образованию горячих трещин и обеспечивает получение плотного металла в малых сечениях без применения «напусков». Вместе с тем стоимость литья из высокопрочного чугуна на 25-30% ниже стоимости стального литья.
Применение высокопрочного чугуна во многих случаях позволяет значительно снизить вес деталей и повысить коэффициент использования металла. Однако следует отметить что, несмотря на указанные преимущества высокопрочного чугуна по сравнению с другими литейными сплавами, область его применения и масштабы производства в России до последнего времени весьма ограничены. Это объясняется тем, что при организации массового производства отливок из этого чугуна встречаются значительные затруднения.
Наиболее трудной задачей является получение отливок из чугуна марок ВЧ40 и ВЧ60 по ГОСТ 7293-85. Вместе с тем применение чугуна этих марок позволяет в наибольшей степени использовать его высокие физико-механические свойства.
Основное затруднение заключается в том, что полученный металл не всегда соответствует требованию по механическим свойствам, особенно по характеристикам пластичности и вязкости.
В отливках часто образуются дефекты в виде «черных пятен», значительно снижающих прочность деталей. Характерными для отливок из ВЧ являются также усадочные дефекты и мелкие поверхностные газовые раковины.
Значительную трудность представляет получение перлитной структуры для марки ВЧ60, в которой феррита должно быть не более 20%.
В целях преодоления указанных затруднений авторами в сотрудничестве с работниками ряда заводов выполнялись работы, по результатам которых разработан и внедрен технологический процесс изготовления отливок из ВЧ, предусмотренных ГОСТ 7293-85. Активное участие в этих работах принимали специалисты кафедры «Литейное производство» ЮУрГУ.

Химический состав, выплавка и разливка чугуна.

Многочисленные наблюдения показали, что при производстве ВЧ встречается несколько характерных типов микроструктуры графита. Условно они названы: шаровидный, вермикулярный и смешанный.
В результате исследований установлено, что чугун со смешанной формой графита получается при содержании магния менее 0,035% и содержании углерода в жидком чугуне менее 3,0-3,2% перед вводом магния.
Для получения чугуна с полностью шаровидным графитом необходимо обеспечить содержание магния в пределах 0,04-0,1%, а также достаточное содержание углерода, причем шаровидный графит получается тем более устойчиво, чем выше содержание углерода в металле перед вводом магния.
Указанная закономерность не всегда согласуется с литературными данными /1,2/, в которых указывается, что для обеспечения получения шаровидного графита в чугуне с увеличением в нем содержания углерода, нужно увеличивать дозировку магния.
Для устойчивого получения шаровидного графита необходимо также, чтобы содержание серы в металле до ввода магния было не более 0,02%. /3, 4/
Форма графита в ВЧ оказывает решающее влияние на его пластичность и вязкость и мало сказывается на характеристиках прочности, что видно на рис. 1,2, где показаны результаты испытания механических свойств этого чугуна множеством плавок.
Картинка
Рис. 1. Влияние формы графита на механические свойства высокопрочного чугуна
Рис. 2. Влияние формы графита на механические свойства высокопрочного чугуна

Влияние микроструктуры металлической основы на механические свойства ВЧ общеизвестно. Однако возникла необходимость в уточнении количества допустимого перлита в ферритном чугуне, учитывая, что в результате отжига некоторое его количество во многих случаях сохраняется. В связи с этим производилось изучение микроструктуры и механических свойств чугуна в лабораторных и производственных условиях. Форма графита в этих чугунах была полностью шаровидной. Химический состав колебался в сравнительно небольших пределах.
Полученные результаты (рис.3) показывают, что в ферритном чугуне марки ВЧ40 допустимо 10-15% перлита, а в марке ВЧ60 феррита может быть не более 10%.

Картинка
Рис. 3. Влияние количества перлита в металлической основе на механические
свойства высокопрочного чугуна

В перлитном и ферритном ВЧ совершенно недопустим цементит, т.к. даже весьма незначительное его количество понижает ударную вязкость до значения менее 1кгм/см2.
Исследования влияния химического состава ВЧ на его механические свойства проводились на чугуне, выплавленном в лабораторных условиях в индукционной печи, а также в различных производственных агрегатах (вагранки, дуговые электропечи) на ряде заводов Урала. Во всех случаях использовали данные только тех плавок, чугун которых имел полностью шаровидный графит и ферритную металлическую основу в литом состоянии или после отжига (не более 10% перлита). Обобщенные результаты представлены на рис. 4,5,6,7.

Картинка

Рис. 4. Влияние углерода на механические свойства высокопрочного чугуна.

Картинка

Рис. 5. Влияние кремния на механические свойства высокопрочного чугуна.

Картинка

Рис. 6. Влияние марганца на механические свойства высокопрочного чугуна.

Картинка
Рис. 7. Влияние фосфора на механические свойства высокопрочного чугуна.

Как видно из данных рис.4 изменение содержания углерода от 2,4 до 3,9% не оказывает заметного влияния на все характеристики механических свойств ВЧ. Оно может выражаться лишь в том, что с понижением содержания углерода возрастает количество перлита, сохраняющегося после отжига. При этом вероятно также наличие структурного свободного цементита и графита нешаровидной формы.
С повышением содержания кремния от 2 до 3% механические свойства ВЧ также практически не изменяются (рис.5). Однако при дальнейшем повышении содержания кремния наступает заметное понижение относительного удлинения и повышение предела прочности при растяжении. Показатели ударной вязкости при этом резко падают в связи с наличием структурно свободных силицидов магния, происходит охрупчивание феррита, в особенности для чугуна ВЧ40.
Влияние марганца аналогично влиянию кремния. Резкое падение ударной вязкости и значительное снижение относительного удлинения наступает при содержании марганца более 0,6% (рис.6).
Влияние фосфора на понижение пластичности и вязкости ВЧ заметно проявляется при содержании его выше 0,08% (рис.7).
Получение чугунов марок ВЧ40, ВЧ45, ВЧ50, ВЧ60 вполне осуществимо в вагранках при правильном подборе модификаторов.
Многие сомневались в возможности получения ВЧ40 из вагранки на холодном дутье, обеспечивающей нагрев чугуна лишь до 1360-кС. Подтверждением стали сравнительные опыты получения ВЧ в индукционных и дуговых электропечах, а также в вагранке производительностью 3т/ч. Во всех плавках использовались одни и те же шихтовые материалы, поэтому полученный металл был практически одинакового химического состава. Отличие состояло лишь в том, что чугун в индукционной и дуговой электропечах нагревался до 1450-1500-кС, а в вагранке до 1360-кС. В связи с этим температура ваграночного чугуна при заливке в формы была 1280-1300-кС, а электропечного чугуна — 1340-1380-кС. Результаты механических испытаний полученного ВЧ (после отжига), приведенные в таблице 1, показывают, что чугун выплавленный в индукционной и дуговой электропечи имеет более высокие показатели относительного удлинения и ударной вязкости, что связано с повышенной температурой заливки и низким содержанием серы. Остальные характеристики механических свойств вполне удовлетворяют требованиям ГОСТа и для ваграночного чугуна.
При выплавке чугуна марок ВЧ40, ФЧ45, ВЧ50, ВЧ60 использовались обычные передельные чугуны ПЛ1 и ПЛ2, с пониженным содержанием фосфора и марганца.

Таблица 1

вфЖ п/п

Плавильный агрегат

Механические свойства

σв , МПа

-д, %

KCU , кДж/м2

HB , ГПа

1

Индукционная печь

470

18

990

170

2

Индукционная печь

510

16

980

170

3

Индукционная печь

55

22,2

124

18

Среднее

51

18,7

1070

175,7

4

Дуговая печь

535

18,1

1150

174

5

Дуговая печь

523

24,8

1050

174

6

Дуговая печь

544

18,4

860

174

7

Дуговая печь

531

19

950

174

Среднее

533,3

20,7

1002,5

174

8

Вагранка

553

6,9

450

187

9

Вагранка

540

15,4

550

170

10

Вагранка

540

18,5

430

175

11

Вагранка

507

13,8

710

192

12

Вагранка

487

20,6

670

160

Среднее

525,4

15

562

174

Опытами установлено, что при производстве отливок из ВЧ40 содержание хрома в шихте не должно быть более 0,1%; для всех других марок — содержание остаточного хрома допустимо до 0,2%.
Весь кремний, вводимый с кремнистыми модификаторами, практически полностью переходит в чугун, что следует учитывать при расчете шихты.
Для обеспечения повышенного содержания углерода в чугуне до его модифицирования, стальной лом в шихте следует применять не более 15-20%. Чугунный лом может использоваться в любом количестве, но при условии обеспечения требуемого химического состава чугуна.
При разливке металла в формы должны быть приняты меры предупреждающие образование «черных пятен», являющихся наиболее распространенным видом дефектов в отливках из ВЧ. В результате введения магниевой лигатуры значительная часть углерода (от 0,2 до 0,8%) переходит в шлак. Установлено, что «черные пятна» являются преимущественно скоплениями сульфидов магния и графита. На серных отпечатках они представляются в виде резко затемненных пятен — следов разложившихся при изготовлении шлифа сульфидов магния (рис.8 и 9).

Картинка

При химическом анализе в местах «черных пятен» обнаруживается повышенное содержание углерода и серы (таблица 2).


Таблица 2

вфЖ п/п

«черное пятно»

чистый металл

содержание, %

C

S

C

S

1

3 ,78

0,16

2,83

0,009

2

3,68

0,188

2,48

0,01

3

4,88

0,041

3,0

0,01

В качестве мер борьбы с дефектами отливок в виде «черных пятен» можно рекомендовать различные способы: повышение температуры заливки, обработка жидкого металла флюсами (карбонат натрия, «рефлой» и т.д.).Все эти способы уменьшают, но не устраняют полностью возможность образования «черных пятен» в отливках. Кроме того, каждый из них имеет отрицательные стороны, которые могут привести к неудовлетворительным результатам в отношении формы графита и механических свойств чугуна.
Для борьбы с «черными пятнами» можно использовать заливку ковшами с сифонной подачей металла в формы. Опыт показал, что для разливки металла больше одной тонны с успехом можно применять обычные стопорные ковши.
Снятием серных отпечатков с темплетов, залитых с применением сифонных или стопорных ковшей, было установлено полное отсутствие «черных пятен».
Весьма важным фактором, определяющим качество отливок из ВЧ, является установление оптимальной температуры заливки.
Были проведены опыты по изготовлению отливок различной толщины стенок, залитых при температурах 1250, 1280 и 1370-кС. Температура заливки оказывает значительное влияние на показатели относительного удлинения. Характеристики прочности при этом не изменяются. Данные рис.10 показывают, что влияние температуры заливки с уменьшением толщины стенки отливки возрастает. Оптимальной температурой заливки ВЧ следует считать 1320-1340-кС. Применение более высокой температуры заливки нецелесообразно, потому что это приводит к понижению усвоения магния, вследствие чего механические свойства чугуна получаются менее стабильными.

Картинка
Список литературы:

1. Шапранов И.А. О кристаллизации и механических свойствах высокопрочного чугуна с шаровидным графитом. В сб. Новое в теории и практике литейного производства. — М-Л., Машгиз, 1956. — С. 312-319.
2. Гиршович Н.Г. Кристаллизация и свойства чугуна в отливках. — Л., Машиностроение, 1966.
3. Кривошеев А.Е., Маринченко Б.В., Фетисов Н.М. Механические свойства чугуна с шаровидным графитом в отливках // Литейное производство. 1972, вфЖ5. — С. 34-35.
4. Захарченко Э.В., Левченко Ю.Н., Горенко В.Г., Вареник П.А. Отливки из чугуна с шаровидным и вермикулярным графитом. — Киев, Наукова думка, 1986.

Документы

Другие Чугун:

Источник