Какое свойство воды используется при транспирации

Какое свойство воды используется при транспирации thumbnail
  1. Главная
  2. Агрономия
  3. Транспирация у растений

Аватар для Елена Голец Елена Голец01 Май 2017 18136

Испарение воды растением представляет собой физический процесс, так как при этом в межклеточниках листьев вода переходит в парообразное состояние, и затем образовавшийся пар через устьица диффундирует в окружающее пространство. Однако испарение воды — это и сложный физиологический процесс, поскольку он связан с анатомическими и физиологическими особенностями растений, поэтому в отличие от физического, физиологический процесс испарения растением воды и назван транспирация у растений.Герань Транспирация у герани.

От чего зависит транспирация у растений

Зависит транспирация у растений от:

  • количества и размеров проводящих сосудов,
  • числа устьиц,
  • толщины кутикулы,
  • состояния коллоидов протоплазмы,
  • концентрации клеточного сока и других причин.

Вода передвигается вверх по стеблю, так как в результате транспирации в клетках листьев возникает сосущая сила, которая передается от них до корневых волосков корня, поглощающих воду из почвы.
Если поместить срезанную ветку или какое-либо растение в сосуд с водой, в течение долгого времени растение не вянет, что указывает на присасывающее действие транспирации.
 

Значение транспирации

Значение транспирации заключается в том, что:

  • вместе с водой по растению передвигаются поступившие в него минеральные элементы;
  • транспирация понижает температуру листа и защищает его от перегрева.

Оранжерея Оранжерея растений.
Например, в оранжереях и парниках, где воздух влажный и транспирация подавлена, бывают ожоги листьев солнечными лучами. За счет транспирации создается некоторая недонасыщенность водой коллоидов протоплазмы, что способствует нормальному плодоношению и созреванию плодов, так как в этом случае идут синтетические процессы.

Влияние внешней среды

Влияние факторов внешней среды на процесс транспирации и ее суточный ход, выражается действием следующих  факторов:

  •  влияние света,
  • температуры воздуха,
  • сила ветра,
  • степень насыщения воздуха парами воды.

Транспирация Влияние факторов внешней среды на процесс транспирации у растений.
Свет способствует открытию устьичных щелей и повышает проницаемость протоплазмы испаряющих клеток для воды. Хлорофилл энергично поглощает солнечные лучи, что повышает температуру листа и усиливает испарение.
Увеличение транспирации снижает температуру листа, в результате чего испаряющие листья: не перегреваются. Даже рассеянный свет повышает транспирацию на 30—40% по сравнению с транспирацией, идущей в темноте. По данным Визнера, 100 кв. см листа кукурузы испаряют в темноте 97 мг воды, на рассеянном — 114 мг, на прямом солнечном свету —785 мг.
Температура воздуха, окружающего растение, также, влияет на транспирацию. С повышением температуры транспирация увеличивается, так как при этом усиливаются движение молекул воды и скорость диффузии водяного пара с поверхности коллоидов клеточных оболочек.
Сила ветра может играть двоякую роль в процессе транспирации. Роль ветра сводится к замене влажных слоев воздуха над листьями растений сухими, т. е. ветер влияет только па вторую фазу транспирации — выход пара из межклеточников листа. Сильный ветер треплет листья, что вызывает замыкание устьичных щелей и тем снижает транспирацию.
На транспирацию оказывает большое влияние и степень насыщения воздуха парами воды. Чем больше сухость воздуха, тем интенсивнее идет процесс транспирации, и наоборот.

Суточный ход транспирации

В течение суток транспирация зависит от внешних факторов. В утренние часы транспирация слабая, с поднятием солнца над горизонтом, повышением температуры воздуха и уменьшением содержания водяных паров в воздухе транспирация возрастает. К вечеру транспирация уменьшается и в ночные часы снижается до минимума.Лилии Суточный ход транспирации у растений зависит от внешних факторов.
Правильный суточный ход транспирации наблюдается только при безоблачном небе. Очень часто суточный ход транспирации имеет 2 максимума; минимум транспирации обычно падает на самые жаркие часы дня в полдень, что связано с обезвоживанием растений и закрытием устьиц.

Показатели транспирации

Транспирация у растений характеризуется следующими показателями:

  • интенсивность транспирации,
  • относительная транспирация,
  • транспирационный коэффициент,
  • продуктивность транспирации.

Интенсивность транспирации

Для сравнения транспирации растений ее обычно относят к единице площади и времени. Количество испаренной воды в единицу времени единицей поверхности листа называется интенсивностью транспирации.
Интенсивность транспирации у разных растений неодинакова в течение суток: днем у большинства растений она равна 15— 250 г. в час на 1 кв. м, ночью — 1—20 г.

Относительная транспирация

Чтобы иметь представление о скорости отдачи воды листовой поверхностью, ее сравнивают со скоростью испарения с открытой водной поверхности. Полученная величина называется относительной транспирацией. Относительная транспирация колеблется от 0,01 до 1,0.

Транспирационный коэффициент

Показателями транспирации могут также служит транспирационный коэффициент. Транспирационный коэффициент показывает, сколько граммов воды расходует растение за время накопления 1 г. сухого вещества.
Для правильного определения коэффициента необходимо учитывать не только сухой вес листьев, но обязательно и сухой вес стеблей и корней. Транспирационный коэффициент неодинаков для различных видов растений и даже для одного и того же вида растения, так как величина его зависит от условий произрастания.Пион Транспирационный коэффициент растений неодинаков и зависит от условий произрастания.
Транспирационный коэффициент достаточно точно определен для однолетних растений; средняя его величина для травянистых растений равна 300—400 г.
Транспирационный коэффициент до известной степени характеризует потребность растения в воде и в какой-то мере может быть использован при расчетах количества поливной воды.

Читайте также:  В каких статьях конституции юридические свойства

Продуктивность транспирации

Продуктивность транспирации — это количество граммов сухого вещества, накапливаемого растением за время транспирации 1 кг воды. Продуктивность транспирации колеблется от 1 до 8 г, а в среднем примерно равна 3 г. Зная величину транспирационного коэффициента, легко рассчитать продуктивность транспирации, и наоборот.

Лист как орган транспирации

Основную роль в транспирации у растений играют листья. Лист растения с верхней и нижней стороны покрыт эпидермисом, наружная стенка которого имеет кутикулу.Розы Лист как орган транспирации у розы.

Строение устьиц и принцип их работ

В эпидермисе имеются отверстия — устьица, ограниченные двумя замыкающими клетками. В отличие от остальных клеток эпидермиса замыкающие клетки имеют хлоропласты и способны к фотосинтезу.
Толщина стенок замыкающих клеток неодинакова, противоположные щелям стенки, примыкающие к отверстию, утолщены. Поэтому при увеличении объема замыкающих клеток стенки растягиваются, тянут за собой примыкающие к щелям стенки, устьичная щель открывается. При уменьшении объема замыкающих клеток стенки их выпрямляются и устьичная щель закрывается
Замыкающие клетки устьиц злаков имеют иное строение они совершенно прямые, средняя часть клетки имеет очень толстые стенки, концы клеток тонкостенны и вздуты. При увеличении тургора концевые расширения замыкающих клеток увеличиваются в объеме, а средние толстостенные части отодвигаются друг от друга, открывая устьичную щель.
В основе открывания и закрывания устьиц лежит процесс перехода сахара в крахмал, и наоборот. Утром в замыкающих клетках начинается процесс фотосинтеза, в результате чего образуются осмотически деятельные сахара, которые на свету в крахмал не переходят.Процесс перехода сахара в крахмал, и наоборот - лежит В основе открывания и закрывания устьиц Процесс перехода сахара в крахмал, и наоборот — лежит в основе открывания и закрывания устьиц.
Осмотическое давление в замыкающих клетках повышается, увеличивается сосущая сила, поэтому они могут насасывать воду из близлежащих клеток эпидермиса. Объем замыкающих клеток увеличивается, и устьичная щель открывается. В темноте сахар превращается в крахмал, осмотическое давление в замыкающих клетках уменьшается, и соседние клетки эпидермиса сосут из них воду, поэтому объем замыкающих клеток становится меньше и устьичная щель закрывается.
Осмотическое давление в замыкающих клетках может повышаться также и за счет крахмала, который на свету может переходить в сахар. Движение устьиц зависит и от многих других факторов: изменения вязкости протоплазмы замыкающих клеток, содержания воды в клетках мезофилла, осмотического давления клеточного сока, температуры и других причин.
Обычно у большинства растений устьица открываются на рассвете, максимум открытия наблюдается к одиннадцати часам, к полудню щель устьица начинает несколько сужаться, и вечером оно закрывается. В жаркую погоду замыкающие клетки устьиц теряют много-воды и могут закрыться уже в полдень. Засухоустойчивые растения и в полдень имеют открытые устьица.

Транспирация устьичная и кутикулярная

Транспирация бывает:

  • устьичная,
  • кутикулярная.

Устьичная транспирация

Устьичная транспирация— это испарение воды с поверхности клеток мезофилла в межклеточники листа и диффузия образовавшегося водяного пара через устьичные отверстия в атмосферу.
Интенсивность устьичной транспирации зависит от количества устьиц на единице поверхности листа. Величина эта значительно колеблется у разных видов растений. Травянистые растения имеют 100—300, а иногда и 1000 устьиц на 1 кв. мм, древесные растения, например береза и осина, соответственно 160 и 290 устьиц на 1 кв. мм.Березняк Береза — древесное растение с устьичной транспирацией.
Площадь устьичных отверстий составляет всего около 1% (не более 2%) от поверхности листа. Несмотря на то, что площадь устьичных отверстий незначительна, диффузия водяного пара идет с большой скоростью, так как согласно закону Стефана испарение с малых поверхностей идет пропорционально их суммарному диаметру, а не площади, так как с периферии поверхности малых отверстий пар диффундирует с большей скоростью, чем с внутренних участков. В первом случае молекулы пара двигаются, более свободно, меньше сталкиваясь с другими частицами пара.
Столкновения же задерживают диффузию молекул пара, испаряющихся от внутренних частей круглой поверхности, что снижает скорость испарения воды. При расстоянии между щелями устьиц не меньше 10 диаметров щели испарение через мелко продырявленную перегородку может оказаться таким же, как и из открытого сосуда.

Кутикулярная транспирация

Кутикулярная транспирация представляет собой испарение воды всей поверхностью листа через кутикулу. Кутикулярная транспирация зависит от целого ряда условий:

  • температуры листьев,
  • скорости ветра,
  • влажности воздуха,
  • толщины кутикулы.

У молодых листьев со слабо развитой кутикулой кутикулярная транспирация может составлять 1/2 от общей интенсивности транспирации. У взрослых листьев кутикулярная транспирация в 10— 20 раз слабее устьичной. Весьма значительна кутикулярная транспирация у теневыносливых растений, достигающая почти 1/2 от всей транспирации.Кутикулярная транспирация Кутикулярная транспирация шиповника — испарение воды всей поверхностью листа через кутикулу.
У растений влажных местообитаний, кутикулярная транспирация равна устьичной, а иногда и превосходит в связи с сильно развитой кутикулой, кутикулярная транспирация почти отсутствует.
Проницаемость кутикулы после смачивания резко увеличивается, поэтому в жаркие дни при поливе растений нельзя смачивать листья.

Читайте также:  Какие свойства у шалфея

Регулировка транспирации (устьичная и внеустьичная)

Регулировка транспирации может быть устьичной и внеустьичной.

Устьичная регулировка

Устьичная регулировка представляет собой регулировку выхода водяного пара: устьица могут открываться и закрываться; следовательно, они могут регулировать транспирацию.

Внеустьичная регулировка

Внеустьичиой регулировкой называется регулировка образования пара из воды в межклеточниках листа. Под влиянием транспирации клеточные, стенки, теряющие воду, с большой силой удерживают оставшуюся воду, поэтому задерживается парообразование и уменьшается транспирация.
Если осмотический потенциал почвенного раствора высок, вода поступает в растение с трудом, замедленно, что отражается на расходовании воды растением. В этом случае растение закрывает устьица и этим обрекает себя на углеродное голодание.
Если у растений хорошо выражена внеустьичная регулировка, задерживающая образование пара, то растение может при неблагоприятных условиях без вреда для себя держать устьица открытыми, не снижая процесса фотосинтеза.

Рейтинг: 4,3/5 — 7
голосов

Источник

Что такое испарение?

  • Испарение на молекулярном уровне
  • Испарение и кипение: в чем отличие?
  • Факторы, влияющие на скорость испарения
  • Роль испарения
  • Испарение в организме человека, в животных и растениях
  • Испарение в природе и окружающей среде
  • Испарение в промышленности и быту
  • Испарение, видео
  • Испарением в физике (впрочем, и не только в ней) называют фазовый переход любой жидкости в парообразное или газообразное состояние. Простейший пример, с которым сталкивается каждый человек – испарение воды, когда мы ее сильно нагреваем, к примеру, делая себе чай, из нее идет пар. Пар этот и есть та самая вода, которая из жидкого состояния перешла в парообразное. Особенности процесса испарения разных жидкостей хорошо изучены физиками, а само испарение широко применяется в промышленности и в быту, встречается также и в природе.

    Что такое испарение?

    Классическое определение звучит так: испарение – это переход из жидкости в газ. При этом это термодинамический процесс, то есть такой, который происходит под воздействием температурных колебаний. Именно вследствие испарения количество любой жидкости в любой незакрытой емкости будет постепенно уменьшаться.

    Какие же причины испарения? Физика объясняет это явление разницей температур на грани фазового перехода: жидкость обычно несколько холоднее окружающего воздуха. Если нет каких-то внешних влияний, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость вследствие диффузии, они переходят через полупроницаемую для жидкостей, но непроницаемую для газовых веществ поверхность раздела фаз массового потока.

    Важно знать, что испарение всегда происходит только с поверхности жидкости, в этом основное отличие испарения от других форм парообразования. Атомы и молекулы испаряются не все сразу, а небольшими слоями, постепенно. Но, разумеется, со временем они могут испариться полностью.

    испарение воды

    Еще одной интересной особенностью испарения является тот факт, что оно может иметь разную направленность тепловых потоков. Они могут идти:

    • из глубины жидкости к поверхности, а затем в воздух,
    • только из жидкости к поверхности,
    • к поверхности из воды и газовой среды одновременно,
    • к площади поверхности только от воздуха.

    Направленность тепловых потоков при испарении зависит от характера жидкости, температуры окружающего воздуха и фазового раздела. Эти три величины и их соотношение формируют формулу испарения.

    Испарение на молекулярном уровне

    В жидкостях молекулы, хотя и расположены близко друг к другу, тем не менее, они не имеют твердой связи между собой, как в твердых телах. Поэтому они находятся в непрерывном движении, в ходе которого часто сталкиваются друг с другом, меняют свое направление и скорость своего движения. Часть молекул, которые оказались близко к поверхности могут и вовсе покинуть жидкость, если проникнут через зону фазового перехода. И тогда произойдет испарение. Как видите, обязательным условием для этого физического процесса является непрерывное движение молекул в жидкости. Если движущаяся молекула обладает достаточной кинетической энергией и скоростью, то она может преодолеть притяжение соседних частиц и вылететь на поверхность.

    Почему же испарение усиливается при нагревании жидкости? При нагревании движение молекул в воде, или другой жидкости заметно ускоряется, и все больше молекул начинают гонять аки «Шумахеры», в результате вылетая на поверхность.

    При этом в какой-то момент может произойти такое явление как «испарительное охлаждение жидкости», когда нагретую жидкость уже покинули все самые быстрые молекулы и происходит снижении температуры самой жидкости. В частности это явление объясняет, почему человеку, даже облитому теплой водой постепенно будет становиться холодно – все быстрые молекулы этой теплой воды испарятся, а оставшаяся вода быстро охладится без своих «молекул-гонщиков».

    Испарение в природе

    Кипение гейзеров, отличный пример испарения в природе.

    Испарение и кипение: в чем отличие?

    В начале статьи мы писали, что испарение особенно заметно при кипении воды, когда мы, к примеру, делаем себе чай. На самом деле испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в речке или озере непрерывно испаряется, хотя мы этого и не замечаем. Что же касается кипения, то оно является, по сути, катализированным испарением, когда сам процесс становится заметным невооруженным глазом и во много раз ускоренным.

    Читайте также:  Виноград какие полезные свойства

    Чашка чая

    Но кипение происходит только при определенных температурах, причем в разных жидкостях разные температуры кипения (например, у воды температура кипения 100 °C), в то же время испарение происходит всегда, независимо от температуры жидкости. В этом и заключается их отличие.

    Факторы, влияющие на скорость испарения

    Учеными выделены такие основные факторы, которые имеют влияние на скорость испарения:

    • Химические и физические свойства жидкости, характер связей между молекулами, плотность вещества. Чем ближе друг к другу расположены молекулы жидкости, тем им труднее набрать нужную скорость, чтобы вылететь и тем ниже скорость испарения, и тем больше температура кипения. К слову спирты и алкоголь улетучиваются гораздо быстрее, нежели просто вода.
    • Температура. В отличии от явления кипения, испарение жидкости может происходить даже при минусовых температурах жидкости. Но все равно при понижении температуры скорость движения частиц уменьшается, и как следствие уменьшается скорость испарения.
    • Размер поверхности. Тут все просто, чем больше площадь испарения, то есть площадь соприкосновения жидкости с воздухом, тем большей будет скорость испарения.
    • Скорость ветра также может влиять на скорость испарения в природных условиях, так как быстрое движение воздуха «сдувает» молекулы с поверхности, увеличивая их скорость и кинетическую энергию.
    • Атмосферное давление, чем оно ниже, тем быстрее испаряется любая жидкость.

    Роль испарения

    И испарение, и кипение распространенные физические явления в нашей жизни. Мы постоянно сталкиваемся с ними в нашем быту, испарение активно используется в промышленности и природных условиях, как именно, читайте далее.

    Испарение в организме человека, в животных и растениях

    Испарение играет важную роль процессе саморегуляции температуры тела человека, как впрочем, и почти всех млекопитающих. Так как чрезмерный перегрев тела вредный, а порой и смертельный (так при температуре тела более 42,2 °C в крови человека происходит свертывание белка, что приводит к смерти) организм имеет защитный механизм для предотвращения перегрева – потоотделение. Например, когда мы болеем и имеем высокую температуру, а потом она падает, мы обильно потеем. Также мы потеем при тяжелом физическом труде, при перегреве на Солнце. Пот выделяется через поры кожи, а затем испаряется, все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализировать температуру.

    Аналогично это работает и у животных, а некоторые порой даже стремятся ускорить процесс испарения. Так, например собаки для этой цели в жаркую погоду открывают рот и высовывают язык. Именно гортань и язык собаки наиболее подходят для испарения влаги и охлаждения тела животного.

    собака с высунутым языком

    Что же касается растений, то и они обладают схожим механизмом. Во избежание перегрева на Солнце они запускают процесс испарения ранее поглощенной воды, таким образом, охлаждаясь. Именно поэтому очень важно в жаркую погоду усиленно поливать культурные растения, предотвращая их выгорание или засыхание, ведь в такие дни влага особенно нужна растениями не только для питания, но и для охлаждения.

    Испарение в природе и окружающей среде

    Роль испарения в природе просто огромна, так как без этого физического явления была бы невозможна сама Жизнь на нашей планете. Именно испарение лежит в основе естественного круговорота воды, который обеспечивает экосистему Земли необходимыми питательными элементами и разносит жизненно важную влагу по всему миру. Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, питают растения и деревья.

    Именно благодаря испарению на Земле идут дожди, а о том, как они важны и как трудно без них приходится порой, спросите об этом жителей Северной Африки или Центральной Индии, которые часто страдают от засухи.

    Засуха в Африке

    Испарение в промышленности и быту

    Вот лишь несколько примеров использования испарения в промышленности.

    • Испарения применятся при создании охладителей для двигателей и ядерных реакторов.
    • При сушке различных вещей: от одежды до промышленного сырья.
    • При кондиционировании и очищении воздуха.
    • При очистке разных веществ на молекулярном уровне.
    • Во время готовке на пару в кулинарии.
    • При охлаждении воды.

    Промышленная техника, работающая на основе процессов испарения, конструируется по одному и тому же принципу: в ней всегда максимально увеличена площадь поверхности жидкости, чем обеспечивается наиболее оптимальный теплообмен с газовой средой.

    Испарение, видео

    И в завершение образовательное видео по теме нашей статьи.

    Какое свойство воды используется при транспирации

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Evaporation: Definitions, Causes and Examples.

    Источник