Какое свойство воды делает ее хорошим растворителем биологических системах

Какое свойство воды делает ее хорошим растворителем биологических системах thumbnail

Какое свойство воды делает ее хорошим растворителем биологических системах

Введение

Организм человека почти на 70% состоит из воды. Вода — прежде всего растворитель, в среде которого протекают все элементарные акты жизнедеятельности. К тому же вода — продукт и субстрат энергетического метаболизма в живой клетке. Образно говоря, вода — это арена, на которой разыгрывается действие жизни и участник основных биохимических превращений.

Известно что вода присутствует во всех частях нашего организма, хотя например в коре мозга её 85%, в коже 72%, в зубной эмали всего лишь3%. Это свидетельствует о том, что в наиболее интенсивно работающих органах содержится большее число воды.

Некоторая часть воды в организме может более или менее прочно связываться с растворёнными в ней веществами и с поверхностью биополимерных макромолекул с помощью как водородных связей, так и сил ион-дипольного взаимодействия. Это может приводить к заметному изменению конфигурации, эффективных размеров и весов тех или иных частиц, участвующих в реакции, и в некоторых случаях к существенной модификации их свойств. Например, оказывается, что натриевые каналы нервных клеток, имеющие диаметр около 0,5 нм, практически недоступны для прохождения по ним ионов калия, хотя диаметр самого иона K+ равен 0,26 нм. В действительности ион K+ гидратирован и, следовательно, для расчёта его эффективных размеров к диаметру K+ следует прибавить диаметр молекулы воды 0,28 нм. В итоге комплексный ион [K· H2O]+ диаметром почти 0,6 нм сквозь натриевый канал пройти не может, тогда как гидратированный ион [Na· H2O]+ диаметром около 0,47 нм свободно диффундирует через этот канал.

Другим примером изменения размеров биологического субстрата может быть молекула ДНК. В частности известно, что на каждый нуклеотид макромолекулы приходится около 50 молекул воды, связанных с ДНК. В общей сложности водная плёнка ДНК увеличивает эффективный диаметр цилиндрической макромолекулы ДНК с 2 нм в безводном состоянии до 2,9 нм в водном растворе, что чрезвычайно важно, например, при считывании с неё информации.

Строение воды

Вода — уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.

У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.

Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть «полимеризацией». Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то «полимеризация» приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому, может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца (угол 108° ), а шестизвенные (угол 120° ), также как и семизвенные — напряжённые.

Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае — с плоским семизвенным.

В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.

В прикладном аспекте это, например, имеет важное значение для понимания действия лекарственных веществ. Как было показано Л. Полингом структурированная клатратная форма воды в межсинаптических образованиях мозга обеспечивает, с одной стороны, передачу импульсов с нейрона на нейрон, а, с другой стороны при попадании в эти участки наркозного вещества такая передача нарушается, то есть наблюдается явление наркоза. Гидратация некоторых структур мозга является одной из основ реализации действия наркотических анальгетиков (морфина).

Биологическое значение воды

Вода как растворитель. Вода — превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Читайте также:  Какими свойствами обладают жидкости сохраняют форму

Результаты многочисленных исследований строения растворов электролитов свидетельствуют, что при гидратации ионов в водных растворах основную роль играет ближняя гидратация — взаимодействие ионов с ближайшими к ним молекулами воды. Большой интерес представляет выяснение индивидуальных характеристик ближней гидратации различных ионов, как степени связывания молекул воды в гидратных оболочках, так и степени искажения в этих оболочках тетраэдрической льдоподобной структуры чистой воды — связи в молекуле изменяются на неполный угол. Величина угла зависит от иона.

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость. Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью (4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии (2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды — вещества со столь малыми молекулами — необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления. Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания. Плотность воды (максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода — единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Читайте также:  Основные свойства каких аминов выражены сильнее

Большое поверхностное натяжение и когезия. Когезия — это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение — результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной (в идеале — форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды (7,6 · 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент. Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Особенности талой воды

Уже небольшое нагревание (до 50-60° С) приводит к денатурации белков и прекращает функционирование живых систем. Между тем охлаждение до полного замерзания и даже до абсолютного нуля не приводит к денатурации и не нарушает конфигурацию системы биомолекул, так что жизненная функция после оттаивания сохраняется. Это положение очень важно для консервирования органов и тканей предназначенных для пересадки. Как указывалось выше, вода в твёрдом состоянии имеет другую упорядоченность молекул, чем в жидком и после замерзания и оттаивания приобретает несколько иные биологические свойства, что послужило причиной применения талой воды с лечебной целью. После оттаивания вода имеет более упорядоченную структуру, с зародышами клатратов льда что позволяет ей взаимодействовать с биологическими компонентами и растворёнными веществами, например с другой скоростью. При употреблении талой воды в оганизм попадают мелкие центры льдоподобной структуры, которые в дальнейшем могут разрастись и перевести воду во льдоподобное состояние и тем самым произвести оздоравливающее действие.

Информационная роль воды

При взаимодействии молекул воды со структурными компонентами клетки могут образовываться не только вышеописанные пяти-, шести- и т. д. компонентные структуры, но и трёхмерные образования могут образовываться додекаэдральные формы, которые могут обладать способностью к образованию цепочечных структур, связанных общими пятиугольными сторонами. Подобные цепочки могут существовать и в виде спиралей, что делает возможным реализацию механизма протонной проводимости по этому универсальному токопроводу. Следует также учесть данные С. В. Зенина (1997 г.), что молекулы воды в таких образованиях могут взаимодействовать между собой по принципу зарядовой комплементарности, то есть посредством дальнего кулоновского взаимодействия без образования водородных связей между гранями элементов, что позволяет рассматривать структурированное состояние воды в виде исходной информационной матрицы. Такая объёмная структура имеет возможность переориентироваться, в результате чего происходит явление «памяти воды», так как в новом состоянии отражено кодирующее действие введённых веществ или других возмущающих факторов. Известно, что такие структуры существуют непродолжительное время, но в случае нахождения внутри додекаэдра кислорода или радикалов происходит стабилизация таких структур.

В прикладном аспекте возможности «памяти воды» и передачи информации посредством структурированной воды объясняют действие гомеопатических средств и акупунктурных воздействий.

Как уже говорилось, все вещества при растворении в воде образуют гидратные оболочки и поэтому каждой частице растворённого вещества соответствует конкретная структура гидратной оболочки. Встряхивание такого раствора приводит к схлопыванию микропузырьков с диссоциацией молекул воды и образованию протонов, стабилизирующих такую воду, которая приобретает излучательные свойства и свойства памяти, присущие растворённому веществу. При дальнейшем разведении этого раствора и встряхивании образуются всё более длинные цепи — спирали и в 12-сотенном разведении уже нет самого вещества, но сохраняется память о нём. Введение этой воды в организм передаёт эту информацию в структурированные компоненты воды биологических жидкостей, которая передаётся структурным компонентам клеток. Таким образом, гомеопатический препарат действует прежде всего информационно. Добавление спирта в процессе приготовления гомеопатического средства удлиняет устойчивость во времени структурированной воды.

Не исключено, что спиралеобразные цепи структурированной воды являются возможными компонентами переноса информации из биологически активных точек (точек акупунктуры) на структурные компоненты клеток определённых органов.

Список литературы

  1. Садовничая Л. П. с соавт. Биофизическая химия, К.: Вища школа, 1986. — 271 с.
  2. Габуда С. П. Связанная вода. Факты и гипотезы, Новосибирск: Наука, 1982. — 159 с.
  3. Сб. Структура и роль воды в живом организме, Л.: Изд. ЛГУ, 1966. — 208 с.
  4. Бышевский А. Ш., Терсенов О. А. Биохимия для врача, Екатеринбург: изд. «Уральский рабочий», 1994. — 378 с.
  5. Грин Н., Стаут У., Тейлор Д. Биология, т. 1.: Пер. с англ. — М.: Мир, 1993. — 368 с.
  6. Чанг Р. Физическая химия с приложениями к биологическим системам М.: Мир, 1980. — 662 с.
  7. Зенин С. В. Водная среда как информационная матрица биологических процессов. В кн. Тезисы докладов 1 Международного симпозиума, Пущино, 1997, с. 12-13.
  8. Смит С. Электромагнитная биоинформация и вода. Вестник биофизической медицины, 1994 №1, с. 3-13.
  9. Антонченко В. Я., Ильин В. В. Проблемные вопросы физики воды и гомеопатии. Вестник биофизической медицины, 1992 №1, с.11-13.
Читайте также:  Какие есть магические свойства

Источник

Свойства воды и ее роль в клетке:

На первом месте среди веществ клетки стоит вода. Она составляет около 80% массы клетки. Вода важна для живых организмов вдвойне, ибо она необходима не только как компонент клеток, но для многих и как среда обитания.

1. Вода определяет физические свойства клетки — ее объем, упругость.

2. Многие химические процессы протекают только в водном растворе.

3. Вода — хороший растворитель: многие вещества поступают в клетку из внешней среды в водном растворе, и в водном же растворе отработанные продукты выводятся из клетки.

4. Вода обладает высокой теплоемкостью и теплопроводностью.

5. Вода обладает уникальным свойством: при охлаждении ее от +4 до 0 градусов, она расширяется. Поэтому лед оказывается легче жидкой воды и остается на ее поверхности. Это очень важно для организмов, обитающих в водной среде.

6. Вода может быть хорошим смазочным материалом.

Биологическая роль воды определяется малыми размерами ее молекул, их полярностью и способностью соединяться друг с другом водородными связями.

Биологические функции воды:

транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

метаболическая. Вода является средой для всех биохимических реакций, донором электронов при фотосинтезе; она необходима для гидролиза макромолекул до их мономеров.

вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме.

За очень немногими исключениями (кость и эмаль зуба), вода является преобладающим компонентом клетки. Вода необходима для метаболизма (обмена) клетки, так как физиологические процессы происходят исключительно в водной среде. Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.

Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95% всей воды в клетке и используется главным образом как растворитель и как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на долю которой приходится всего 4% всей воды клетки, непрочно соединена с белками водородными связями.

Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты

Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке. Содержание воды в организме зависит от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе (90% ) и с возрастом постепенно уменьшается. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Например, в сером веществе мозга воды до 80%, а в костях до 20%. Вода — основное средство перемещения веществ в организме (ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит «смазочным» материалом, необходимым везде, где есть трущиеся поверхности (например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.

Источник