Какое свойство углерода подчеркивает своеобразие

Какое свойство углерода подчеркивает своеобразие thumbnail

Органическая химия

Углерод. Особенности строения. Свойства.

Строение углерода

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.

Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.

Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.

А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s-электроны, а два другие – не спаренные р-электроны.

Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Внешний электронный слой атома углерода

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.

При возбуждении атома (при сообщени ему энергии) один из спаренных S-электронов занимает р-орбиталь.

Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.

Так, простейшее органическое соединение углеводород метан имеет состав СН4. Строение его может быть выражено структурной или электронной формулами:

Метан

Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.

Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве.
Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.

Метан

Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.

Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s— и трёх p-орбиталей в результате sp3-гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp3-орбитали, вытянутые в направлении к вершинам тетраэдра.

Метан

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.

В левой части  периодической системы   расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.

Элементы этих двух групп являются металлами. Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.

В правой части периодической системы, наоборот, находятся неметаллы (окислители). В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.

Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.

Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.

Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.

По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны.

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.

Углеродная цепь

Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.

Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).

Так углеводороды этан (С2Н6) и пропан (С3Н8) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:

Этан и пропан

Известны соединения, содержащие в цепях сотни и более атомов углерода.

Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Читайте также:  Какими свойствами обладает ванадий в

Конформации пентана

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:

Замыкание углеводородных цепей в циклы

Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.

Образование сигма-связей в молекуле этана

Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:

Двойные и тройные связи

Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):

Этилен и ацетилен

Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

Источник

Углерод — химический элемент № (6). Он расположен в IVА группе Периодической системы.

C6+6)2e)4e

На внешнем слое атома углерода содержатся четыре валентных электрона, и до его завершения не хватает четырёх электронов. Поэтому в соединениях с металлами углероду характерна степень окисления (–4), а при взаимодействии с более электроотрицательными неметаллами он проявляет положительные степени окисления: ( +2) или (+4).

В природе углерод встречается как в виде простых веществ, так и в виде соединений. В воздухе содержится углекислый газ. В земной коре распространены карбонаты (например, CaCO3 образует мел, мрамор, известняк). Горючие ископаемые (уголь, торф, нефть, природный газ) состоят из органических соединений, главным элементом которых является углерод. 

Углерод относится к жизненно важным элементам, так как входит в состав молекул всех органических веществ.

Углерод образует несколько аллотропных видоизменений, из которых наиболее известны алмаз и графит.

Алмаз имеет атомную кристаллическую решётку. Каждый атом углерода в алмазе связан четырьмя прочными ковалентными связями с соседними атомами, расположенными в вершинах тетраэдра.

Благодаря такому строению алмаз — самое твёрдое из известных природных веществ. Все четыре валентных электрона каждого атома углерода участвуют в образовании связей, поэтому алмаз не проводит электрический ток. Это бесцветное прозрачное кристаллическое вещество, хорошо преломляющее свет.

Графит тоже имеет атомную кристаллическую решётку, но устроена она иначе. Решётка графита слоистая. Каждый атом углерода соединён прочными ковалентными связями с тремя соседними атомами. Образуются плоские слои из шестиугольников, которые между собой связаны слабо. Один валентный электрон у атома углерода остаётся свободным.

Графит представляет собой тёмно-серое вещество с металлическим блеском, жирное на ощупь. В отличие от алмаза графит непрозрачный, проводит электрический ток и оставляет серый след на бумаге. У графита очень высокая температура плавления ((3700) °С).

Алмаз и графит взаимопревращаемы. При сильном нагревании без доступа воздуха алмаз чернеет и превращается в графит. Графит можно превратить в алмаз при высокой температуре и большом давлении.

Из мельчайших частиц графита состоят сажа, древесный уголь и кокс. Сажа образуется при неполном сгорании топлива. Древесный уголь получают при нагревании древесины без доступа воздуха, а кокс — переработкой каменного угля.

Древесный уголь имеет пористое строение и обладает способностью поглощать газы и растворённые вещества. Такое свойство называется адсорбцией.

Аллотропные модификации углерода в химических реакциях могут проявлять и окислительные, и восстановительные свойства. Окислительные свойства углерода выражены слабее, чем у других неметаллов второго периода (азота, кислорода и фтора).

  • Взаимодействие с металлами.

Углерод реагирует с металлами при высокой температуре с образованием карбидов:

4Al0+3C0=tAl+34C−43.

В этой реакции углерод выступает как окислитель.

  • Взаимодействие с водородом.

Реакция происходит при сильном нагревании. Образуется метан. Углерод — окислитель.

C0+2H02=tC−4H+14.

  • Взаимодействие с кислородом.

Углерод горит в кислороде с образованием углекислого газа и проявляет в этой реакции восстановительные свойства:

C0+O02=tC+4O−22.

  • Взаимодействие с оксидами металлов.

Углерод способен восстанавливать металлы из их оксидов:

2Cu+2O+C0=t2Cu0+C+4O2. 

Применение простых веществ

 Алмаз применяется:

  • для обработки твёрдых поверхностей;
  • для резки стекла;
  • для изготовления буров и свёрл;
  • для изготовления ювелирных украшений.

Графит используется:

  • при изготовлении карандашей;
  • как твёрдая смазка в подшипниках;
  • для изготовления электродов;
  • в качестве замедлителя нейтронов в ядерных реакторах;
  • для получения искусственных алмазов.

Сажа:

  • входит в состав типографской краски, крема для обуви;
  • используется как наполнитель для производства резины.

Уголь используется:

  • в противогазах, промышленных и бытовых фильтрах;
  • для очистки сахарного сиропа, спирта и т. д.;
  • в медицине.
Читайте также:  Какое общее свойство присуще газам и жидкостями

Кокс применяется в металлургической промышленности.

Источник

Углерод — это, пожалуй, основной и самый удивительный химический элемент на Земле, ведь с его помощью формируется колоссальное количество разнообразных соединений, как неорганических, так и органических. Углерод является основой всех живых существ, можно сказать, что углерод, наравне с водой и кислородом, — основа жизни на нашей планете! Углерод имеет разнообразие форм, которые не похожи ни по своим физико-химическим свойствам, ни по внешнему виду. Но всё это углерод!

История открытия углерода

Углерод был известен человечеству ещё с глубокой древности. Графит и уголь использовались ещё древними греками, а алмазы нашли применение в Индии. Правда, за графит частенько принимали похожие по внешнему виду соединения. Тем не менее, графит имел широкое применение в древности, в частности для письма. Даже его название происходит от греческого слова «графо» — «пишу». Графит сейчас используется в карандашах. Алмазами начали впервые торговать в Бразилии в первой половине 18 века, с этого времени открыто множество месторождений, а в 1970 году была разработана технология получения алмазов искусственным путём. Такие искусственные алмазы применяются в промышленности, натуральные же, в свою очередь, в ювелирном деле.

Углерод в природе

Содержание углерода в земной коре составляет всего около 0,15%. Казалось бы, один из основных элементов, а так мало… На самом деле, углерод подвержен постоянному круговороту из земной коры через биосферу в атмосферу и наоборот. Из углерода состоят природный газ, нефть, уголь, торф, известняки и многие другие соединения.

Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа.  В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.

Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…

круговорот углерода в природеКруговорот углерода в природе

Аллотропные модификации углерода

Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации, или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.

Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз, фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире» .

аллотропные модификации углеродаАллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.

Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.

Графит - "тёмная сторона" алмазаГрафит — «тёмная сторона» алмаза

Применение углерода

Углерод и его соединения имеют огромное значение в жизнедеятельности человека. Из углерода образованы главные виды топлива на Земле — природный газ и нефть. Соединения углерода широко применяются в химической и металлургической промышленности, в строительстве, в машиностроении и медицине. Аллотропные модификации в виде алмазов используют в ювелирном деле, фуллерит и лонсдейлит в ракетостроении. Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!

Источник

Химические свойства углерода

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

Читайте также:  Какие полезные свойства календулы

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO2:

С + О2 = СО2; 2С + О2 = 2СО

При взаимодействии углерода со фтором образуется тетрафторид углерода:

C + 2F2 = CF4

При нагревании углерода с серой образуется сероуглерод CS2:

2S + C = CS2

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

2Fe2O3 + 3C = 4Fe + 3CO2

C + CuO = CO↑ + Cu

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

СаО + 3С = СаС2 + СО↑

2Al2O3 +9C = Al4C3 + 6CO↑

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO2:

2.3.4. Химические свойства углерода и кремния.

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля. Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

2.3.4. Химические свойства углерода и кремния.

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда):

2С + SiO2 = Si + 2CO↑

3С + SiO2 = SiС + 2CO↑

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

C + 2H2SO4 = CO2↑ + 2SO2↑ + 2H2O

C + 4HNO3 = CO2↑ + 4NO2↑ + 2H2O

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

C + 2H2 = CH4

а также с кремнием при температуре 1200-1300 оС:

C + Si = SiC

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

2C + Ca = CaC2

3С + 4Al = Al4C3

Карбиды активных металлов гидролизуются водой:

CaC2 + 2Н2О = Са(OH)2 + C2Н2↑

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4↑

а также растворами кислот-неокислителей:

CaC2 + 2НCl = СаCl2 + C2Н2↑

Al4C3 + 12HCl = 4AlCl3 + 3CH4↑

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

Si + 2F2 = SiF4

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 оС:

Si + 2Cl2 = SiCl4 хлорид кремния (IV)

С бромом – 620-700 оС:

Si + 2Br2 = SiBr4 бромид кремния (IV)

С йодом – 750-810 оС:

Si + 2I2 = SiI4 йодид кремния (IV)

Все галогениды кремния легко гидролизуются водой:

SiF4 + 3H2O = H2SiO3 + 4HF↑

SiCl4 + 3H2O = H2SiO3 + 4HCl↑

а также растворами щелочей:

2.3.4. Химические свойства углерода и кремния.

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300оС) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

Si + O2 = SiO2

При температуре 1200-1500 оС кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

Si + С = SiС

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

2Mg + Si = Mg2Si

Силициды активных металлов легко гидролизуются водой или разбавленными растворами кислот-неокислителей:

Mg2Si + 4H2O = SiH4 + 2Mg(OH)2

Mg2Si + 4HCl > 2MgCl2 + SiH4↑

При этом образуется газ силан SiH4 – аналог метана CH4.

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500оС. При этом образуется водород и диоксид кремния:

Si + H2O(пар) = SiO2 + H2↑

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Si + 4HF(конц.) = H2SiF6 + 2H2↑

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода:

Si + 2NaOH + H2O = Na2SiO3 + H2↑

Источник