Какое свойство спиртов проявляется в реакции с металлическим натрием
В
химических реакциях гидроксисоединений возможно разрушение одной из двух
связей:
·
С–ОН
с отщеплением ОН-группы
·
О–Н
с отщеплением водорода
Это
могут быть реакции замещения, в которых происходит замена ОН или Н, или
реакция отщепления (элиминирования), когда образуется двойная связь.
Полярный
характер связей С–О и О–Н способствует гетеролитическому их разрыву и
протеканию реакций по ионному механизму. При разрыве связи О–Н с
отщеплением протона (Н+) проявляются кислотные свойства
гидроксисоединения, а при разрыве связи С–О – свойства основания и
нуклеофильного реагента.
С
разрывом связи О–Н идут реакции окисления, а по связи С–О – восстановления.
Таким образом, гидроксисоединения могут вступать в многочисленные реакции,
давая различные классы соединений. Вследствие доступности гидроксильных
соединений, в особенности спиртов, каждая из этих реакций является одним из
лучших способов получения определенных органических соединений.
I. Кислотно-основные
RO— + H+ ↔ ROH ↔ R+ + OH-
алкоголят-ион
Кислотные свойства
уменьшаются в ряду, а основные возрастают:
HOH → R-CH2-OH →
R2CH-OH → R3C-OH
вода первичный вторичный третичный
Кислотные свойства
С активными щелочными металлами:
2C2H5OH + 2 Na → 2C2H5ONa + H2
этилат натрия
Алкоголяты подвергаются гидролизу, это доказывает,
что у воды более сильные кислотные свойства
C2H5ONa + H2O ↔ C2H5OH +
NaOH
Основные свойства
С галогенводородными кислотами:
C2H5OH + HBr
H2SO4(конц)↔ C2H5Br
+ H2O
бромэтан
Лёгкость протекания реакции зависит от природы галогенводорода и спирта – увеличение реакционной
способности происходит в следующих рядах:
первичные <
вторичные < третичные
II. Окисление
1). В присутствии
окислителей [O] – K2Cr2O7
или KMnO4 спирты окисляются до карбонильных
соединений:
Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.
При окислении вторичных спиртов образуются кетоны.
Третичные спирты более устойчивы к
действию окислителей. Они окисляются только в жестких условиях (кислая
среда, повышенная температура), что приводит к разрушению углеродного
скелета молекулы и образованию смеси продуктов (карбоновых кислот и
кетонов с меньшей молекулярной массой).
В кислой среде:
Для первичных и
вторичных одноатомных спиртов качественной реакцией является взаимодействие их
с кислым раствором дихромата калия. Оранжевая окраска гидратированного иона Cr2O72-
исчезает и появляется зеленоватая окраска, характерная для иона Cr3+ .
Эта смена окраски позволяет определять даже следовые количества спиртов.
CH3- OH + K2Cr2O7 + 4H2SO4
→ CO2 + K2SO4 + Cr2(SO4)3
+ 6H2O
3CH3-CH2-OH + K2Cr2O7
+ 4H2SO4 → 3CH3COH + K2SO4
+ Cr2(SO4)3 + 7H2O
В более жёстких
условиях окисление первичных спиртов идёт сразу до карбоновых кислот:
3CH3-CH2-OH + 2K2Cr2O7
+ 8H2SO4 t→ 3CH3COOH + 2K2SO4
+ 2Cr2(SO4)3 + 11H2O
Третичные спирты
устойчивы к окислению в щелочной и нейтральной среде. В жёстких условиях (при
нагревании, в кислой среде) они окисляются с расщеплением связей С-С и
образованием кетонов и карбоновых кислот.
В нейтральной среде:
CH3 – OH + 2KMnO4 →K2CO3 + 2MnO2 + 2H2O, а остальные спирты до солей соответствующих
карбоновых кислот.
2). Качественная реакция на первичные спирты!
3). Горение(с увеличением массы углеводородного радикала –
пламя становится всё более коптящим)
CnH2n+1-OH
+ O2t → CO2
+ H2O + Q
III. Реакции
отщепления
1)
Внутримолекулярная дегидратация
CH3-CH2-CH(OH)-CH3 t>140,H2SO4(к)→ CH3-CH=CH-CH3 + H2O
бутанол-2 бутен-2
В тех случаях, когда возможны 2 направления реакции,
например:
дегидратация
идет преимущественно в направлении I, т.е. по правилу Зайцева – с образованием более замещенного алкена. Правило
Зайцева: Водород отщепляется от
наименее гидрированного атома углерода соседствующего с углеродом, несущим
гидроксил.
2) Межмолекулярная дегидратация
2C2H5OH t<140,H2SO4(к)→ С2H5-O-C2H5 + H2O
простой эфир
— при переходе
от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов;
уменьшается способность образовывать простые эфиры.
3)
Реакция дегидрирование и дегидратация предельных одноатомных спиртов – реакция С.В.
Лебедева
2C2H5OH — 425,ZnO,Al2O3→ CH2=CH-CH=CH2 + H2
+ 2H2O
IV. Реакции
этерификации
Спирты
вступают в реакции с минеральными и органическими кислотами, образуя сложные
эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).
Видео-опыты:
Горение спиртов
Взаимодействие этилового спирта с металлическим натрием
Взаимодействие этилового спирта с бромоводородом
Качественная реакция наэтанол
Окисление этилового спиртаоксидом меди (II)
Окисление этилового спиртараствором перманганата калия
Окисление этилового спиртакристаллическим перманганатом калия
Каталитическое окислениеэтанола
Окисление этанола (тест наалкоголь)
- Главная
- Вопросы & Ответы
- Вопрос 1659821
Гость :
7 лет назад
10
1
Лучший ответ:
Гость :
в реакции спиртов с металлическим натрием проявляются кислотные свойства:2C2H5OH 2Na ——> 2C2H5ONa H2 ↑ этилат натрия
7 лет назад
Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):
Лучшее из галереи:
Другие вопросы:
Гость :
Между числами 17 и (-3) вставьте 3 числа ,которые вместе с данными числами образуют арифметическую прогрессию
7 лет назад
Смотреть ответ
10
1
Гость :
Кто такой гастроэнтеролог о каких возможных заболеваниях внутренних органов он предупредит курильщика
7 лет назад
Смотреть ответ
11
1
Гость :
какой вид социальных норм представлен в законах?
7 лет назад
Смотреть ответ
12
1
Гость :
Установите соответствие между признаком и слоем кожи, для которого онхарактерен.
7 лет назад
Смотреть ответ
16
1
Гость :
размножение растений при помощи специализированных гаплоидных клеток: 1.вегетативное, 2.почкование, 3. дробление, 4.споровое
7 лет назад
Смотреть ответ
7
1
Спирты — органические соединения, в состав молекул которых входит одна или несколько гидроксильных групп, соединенных с углеводородным радикалом.
По числу гидроксильных групп в молекуле спирты делятся на одноатомные, двухатомные трехатомные и т. д.
Одноатомные спирты: | Двухатомный спирт: | Трехатомный спирт: | |
CH3—OH метанол (метиловый спирт) | CH3CH2—OH этанол (этиловый спирт) | HO—CH2—CH2—OH этандиол-1,2 (этиленгликоль) | пропантриол-1,2,3 (глицерин) |
Одноатомные спирты
Общая формула одноатомных спиртов — R—OH.
По типу углеводородного радикала спирты делятся на предельные, непредельные и ароматические.
Предельный спирт: | Непредельный спирт: | Ароматический спирт: |
CH3CH2CH2—OH пропанол-1 (пропиловый спирт) | CH2=CH—CH2—OH пропенол-2,1 (аллиловый спирт) | C6H5—CH2—OH фенилметанол (бензиловый спирт) |
Общая формула предельных одноатомных спиртов — CnN2n+1—OH.
Органические вещества, содержащие в молекуле гидроксильные группы, непосредственно связанные с атомами углерода бензольного кольца называются фенолами. Например, C6H5—OH — гидроксобензол (фенол).
По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH2—OH), вторичные (R—CHOH—R’) и третичные (RR’R»C—OH) спирты.
CnN2n+2O — общая формула и предельных одноатомных спиртов, и простых эфиров.
Предельные одноатомные спирты изомерны простым эфирам — соединениям с общей формулой R—O—R’.
г о м о л о г и | CH3OH метанол | |||||
CH3CH2OH этанол | CH3OCH3 диметиловый эфир | |||||
CH3CH2CH2OH пропанол-1 | пропанол-2 | CH3OCH2CH3 метилэтиловый эфир | ||||
CH3(CH2)3OH бутанол-1 | бутанол-2 | 2-метил-пропанол-2 | 2-метил-пропанол-1 | CH3OCH2CH2CH3 метилпропиловый эфир | CH3CH2OCH2CH3 диэтиловый эфир | |
и з о м е р ы |
Для спиртов характерна структурная изомерия (изомерия углеродного скелета, изомерия положения заместителя или гидроксильной группы), а также межклассовая изомерия.
Алгоритм составления названий одноатомных спиртов
- Найдите главную углеродную цепь — это самая длинная цепь атомов углерода, с одним из которых связана функциональная группа.
- Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе функциональная группа.
- Назовите соединение по алгоритму для углеводородов.
- В конце названия допишите суффикс -ол и укажите номер атома углерода, с которым связана функциональная группа.
Физические свойства спиртов во многом определяются наличием между молекулами этих веществ водородных связей:
С этим же связана и хорошая растворимость в воде низших спиртов.
Простейшие спирты — жидкости с характерными запахами. С увеличением числа атомов углерода температура кипения возрастает, а растворимость в воде падает. Температура кипения у первичных спиртов больше, чем у вторичных спиртов, а у вторичных — больше, чем у третичных. Метанол крайне ядовит.
Химические свойства спиртов
- Горение:
C2H5OH + 3O2 2CO2 +3H2O + Q
- Реакции с щелочными и щелочноземельными металлами («кислотные» свойства):
Атомы водорода гидроксильных групп молекул спиртов, также как и атомы водорода в молекулах воды, могут восстанавливаться атомами щелочных и щелочноземельных металлов («замещаться» на них).2Na + 2H—O—H 2NaOH + H2
2Na + 2R—O—H 2RONa + H2Атомы натрия легче восстанавливают те атомы водорода, у которых больше положительный частичный заряд (+). И в молекулах воды, и в молекулах спиртов этот заряд образуется за счет смещения в сторону атома кислорода, обладающего большой электроотрицательностью, электронных облаков (электронный пар) ковалентных связей.
Молекулу спирта можно рассматривать как молекулу воды, в которой один из атомов водорода замещен углеводородным радикалом. А такой радикал, богатый электронными парами, легче, чем атом водорода, позволяет атому кислорода оттягивать на себя электронную пару связи RO.
Атом кислорода как бы «насыщается», и за счет этого связь O—H оказывается менее поляризованной, чем в молекуле воды (+ на атоме водорода меньше, чем в молекуле воды).
В результате атомы натрия труднее восстанавливают атомы водорода в молекулах спиртов, чем в молекулах воды, и реакция идет намного медленнее.
Иногда, основываясь на этом, говорят, что кислотные свойства спиртов выражены слабее, чем кислотные свойства воды.
Из-за влияния радикала кислотные свойства спиртов убывают в ряду
метанол первичные спирты вторичные спирты третичные спирты
С твердыми щелочами и с их растворами спирты не реагируют.
- Реакции с галогеноводородами:
C2H5OH + HBr C2H5Br + H2O
- Внутримолекулярная дегидратация (t > 140oС, образуются алкены):
C2H5OH C2H4 + H2O
- Межмолекулярная дегидратация (t oС, образуются простые эфиры):
2C2H5OH C2H5OC2H5 + H2O
- Окисление (мягкое, до альдегидов):
CH3CH2OH + CuO CH3—CHO + Cu + H2O
Это качественная реакция на спирты: цвет осадка изменяется с черного на розовый, ощущается своеобразный «фруктовый» запах альдегида).
Получение спиртов
- Щелочной гидролиз галогеналканов (лабораторный способ): C2H5Cl + NaOH C2H5OH + NaCl.
- Гидратация алкенов: C2H4 + H2O C2H5OH.
- Брожение глюкозы : C6H12O6 2C2H5OH + 2CO2.
- Синтез метанола: CO + 2H2 CH3OH
Многоатомные спирты
Примерами многоатомных спиртов является двухатомный спирт этандиол (этиленгликоль)
HO—CH2—CH2—OH
и трехатомный спирт пропантриол-1,2,3 (глицерин)
HO—CH2—CH(OH)—CH2—OH.
Это бесцветные сиропообразные жидкости, сладкие на вкус, хорошо растворимы в воде. Этиленгликоль ядовит.
Химические свойства многоатомных спиртов по большей части сходны с химическими свойствами одноатомных спиртов, но кислотные свойства из-за влияния гидроксильных групп друг на друга выражены сильнее.
Качественной реакцией на многоатомные спирты является их реакция с гидроксидом меди(II) в щелочной среде, при этом образуется ярко-синие растворы сложных по строению веществ. Например, для глицерина состав этого соединения выражается формулой Na2[Cu(C3H6O3)2].
Фенолы
Важнейшим представителем фенолов является фенол (гидроксобензол, старые названия — гидроксибензол, оксибензол) C6H5—OH.
Физические свойства фенола: твердое бесцветное вещество с резким запахом; ядовит; при комнатной температуре заметно растворим в воде, водный раствор фенола называют карболовой кислотой.
Химические свойства
- Кислотные свойства. Кислотные свойства фенола выражены сильнее, чем у воды и предельных спиртов, что связано с большей полярностью O—H связи и с большей устойчивостью образующегося при ее разрыве фенолят-иона. В отличие от спиртов, фенолы реагируют не только с щелочными и щелочноземельными металлами, но и с растворами щелочей, образуя феноляты:
2C6H5OH + 2Na 2C6H5ONa + H2 фенолят натрия C6H5OH + NaOH C6H5ONa + H2O
Однако кислотные свойства фенола выражены слабее, чем у карбоновых кислот и, тем более, у сильных неорганических.
- Замещение в бензольном кольце. Наличие гидроксильной группы в качестве заместителя в молекуле бензола приводит к перераспределению электронной плотности в сопряженной -системе бензольного кольца, при этом увеличивается электронная плотность у 2-го, 4-го и 6-го атомов углерода (орто— и пара-положения) и уменьшается у 3-го и 5-го атомов углерода (мета-положение).
а) Реакция с бромной водой (качественная реакция):
Образуется 2,4,6-трибромфенол — осадок белого цвета.
б) Нитрование (при комнатной температуре):
C6H5—OH + HNO3(разб.) H2O + O2N—C6H4—OH (смесь орто— и пара-изомеров)
По вторй реакции образуется 2,4,6-тринитрофенол (пикриновая кислота).
- Поликонденсация фенола с формальдегидом (по этой реакции происходит образование фенолформальдегидной смолы:
- Качественная реакция с хлоридом железа(III). Образуется комплексное соединение фиолетового цвета.
Задачи и тесты по теме «Тема 4. «Спирты. Фенолы».»
Рекомендации к теме
Изучив тему, Вы должны усвоить понятия: функциональная группа, спирты, фенолы, одноатомные спирты, многоатомные спирты, предельные спирты, ароматические спирты.
Проверьте, знаете ли вы общие формулы одноатомных предельных спиртов и простых эфиров. Проверьте, знаете ли вы формулы метанола, этанола, фенола, этиленгликоля, глицерина. Проверьте, знаете ли вы правила номенклатуры одноатомных предельных спиртов; объяснение растворимости спиртов в воде и значительно более высокие температуры кипения по сравнению с соответствующими углеводородами; в чём выражаются кислотные свойства спиртов и фенолов; качественные реакции на многоатомные спирты, фенол, этанол.
Проверьте, умеете ли Вы производить расчеты по уравнениям реакций с учетом выхода продукта.
Пример. Определите объем этилена, который можно получить при дегидратации 92 г этилового спирта, если выход продукта составляет 50 %.
Ответ: 22,4 л
Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.
Рекомендованная литература:
- О. С. Габриелян и др. Химия 10 кл. М., Дрофа, 2002;
- Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001.
- Г. Г. Лысова. Опорные конспекты и тесты по органической химии. М., ООО «Глик плюс», 1999.