Какое свойство радиоактивного излучения

Какое свойство радиоактивного излучения thumbnail

Виды радиоактивных излучений

Навигация по статье:

  • Альфа излучение
  • Нейтронное излучение
  • Бета излучение
  • Гамма излучение
  • Рентгеновское излучение
  • Сравнительная таблица видов радиации
  • Видео о радиации и ее видах

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.


Альфа излучение

альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

Читайте также:  Какие амины проявляют более основные свойства

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!


Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое
Читайте также:  Какие свойства масла виноградной косточки

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение)10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение)20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение)10
Нейтроны > 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации



Источник

Краткая теория.

Современное развитие наук вызвало необходимость систематизации и углубления опыта по исследованию влияния на биологические объекты (человеческий организм) различных видов излучения: радиоактивного, ультразвукового, высокочастотного, ультрафиолетового и т.д. В данной работе рассмотрим виды радиоактивного излучения, познакомимся с их основными свойствами, характерными для любого радиоактивного излучения и основами дозиметрического контроля.

Основные свойства радиоактивного излучения

Активность источникамера радиоактивности, выраженная числом актов распада атомных ядер в единицу времени.

Единица измерений:

СИ: Беккерель [ Бк ]

1 Бк равен 1 ядерному превращению за 1 с или 0,027 нКи

Практическая внесистемная единица: Кюри [ Ки ]

1 Ки = 3.7 1010 ядерных превращений за 1 секунду.

Интенсивность излученияэнергия излучения, проходящая через единицу поперечного сечения за единицу времени.

Единица измерений:

СИ:Дж с-1 м-2

Практическая внесистемная единица: эВ с-1 см-2

1 электрон-вольт (эВ) = 1.6 10-19 Дж

Проникающая способностьспособность проникать как через прозрачные, так и через непрозрачные тела.

Глубина проникновения зависит как от материала (через который проникает излучение), так и от вида и энергии (длины волны) излучения.

Закон ослабления радиоактивного излучения

Id= I0exp (- md),

где I0 — начальная интенсивность излучения;

Id — интенсивность излучения после прохождения через вещество толщиной d.

m— линейный коэффициент ослабления интенсивности, определяемый свойствами вещества, видом и энергией излучения.

Ионизирующая способностьспособность ионизировать вещество при прохождении через него. При этом происходит процесс, который в общем случае можно описать следующим уравнением:

M + Eq = M+ + e,

где M – атом или молекула,

Eq– энергия кванта или частицы,

M+ — положительно заряженный ион,

e – электрон.

Основные дозиметрические величины и единицы измерений

Уровень радиациимощность экспозиционной дозы на высоте 0.7-1 м над зараженной поверхностью.

Экспозиционная дозадоза, полученная за время от начала заражения до времени полного распада радиоактивного вещества.

Единица измерений:

СИ: Кулон на килограмм [ Кл / кг ]

Практическая внесистемная единица: Рентген [Р]

1Р = 2.6 10-4 Кл/кг

1Кл/кг = 3.9 103Р

Мощность экспозиционной дозы (уровень радиации)доза, получаемая объектом в единицу времени.

Единица измерений:

СИ: Кл/(кг с )

Практическая внесистемная единица:

1 Р/с = 3600 Р/ч = 86400 Р/сут

1 Р/ч = 24 Р/сут = 8760 Р/год

Поглощенная доза излученияэнергия, переданная ионизирующим излучением единице массы облучаемого вещества:

D = Eq/ m

(m – масса облучаемого вещества).

Единица измерений:

СИ:Дж/кг или Гр (Грей)

Практическая внесистемная единица: рад

1 рад = 0.01 Гр = 0.01 Дж/кг = 100 эрг/г.

Эквивалентная дозадоза, введенная для оценки возможного ущерба здоровью человека от хронического воздействия ионизирующего излучения:

H = kD

D – поглощенная доза;

k – коэффициет качества ионизирующего излучения.

Единица измерений:

СИ:Зиверт [Зв]

Практическая внесистемная единица: бэр (биологический эквивалент рентгена)

1 бэр = 0.01 Дж/кг = 0.01 Зв

Коэффициент качества k – коэффициент для учета биологической эффективности разных видов ионизирующего излучения.

k

Рентгеновское и g — излучение 1

b — излучение (электроны и позитроны) 1

Быстрые нейтроны (с энергией ~ 20 МэВ) 3

Медленные нейтроны (с энергией 0.1 – 10 МэВ) 10

Протоны с энергией < 10 МэВ 10

a — излучение с энергией < 10 МэВ 20

Тяжелые ядра отдачи 20

III – кожный покров, костная ткань, кисти,

Предплечья, голени и стопы.

Для каждой категории облучаемых лиц устанавливается основной дозовый предел. В качестве основных дозовых пределов в зависимости от группы критических органов для категории А устанавливается предельно допустимая доза за календарный год (ПДД), а для категории Бпредел дозы за календарный год (ПД).

Читайте также:  Какое свойство воды проявляется

Предельно допустимая доза (ПДД)это такое наибольшее значение индивидуальной эквивалентной дозы за календарный год, при котором равномерное облучение в течении 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами.

Предел дозы (ПД) — это такое наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год для лиц категории Б, при котором равномерное облучение в течении 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами.

Основные дозовые пределы

Дозовые пределы суммарного внешнего и внутреннего облучения,
бэр за календарный год
Группа критических органов
I II III
ПДД для категории А 5*
ПД для категории Б 0,5 1,5

*Примечание: Для женщин до 40 лет не более 1 бэр за 2 месяца в области таза.

Естественный фон в России:

4-20 мкР/ч или 35-175 мР/год

Общая доза облучения всего организма для категорииА не должна превышать (бэр):

H = 5( N – 18 )

N – возраст, годы. Во всех случаях доза, накопленная за 30 лет, не должна превышать 60 бэр.

Нормативы ПДД в военное время и аварийных ситуациях:

  1. Однократное облучение 50 бэр
  2. Многократное облучение за 30 дн. 100 бэр
  3. Многократное облучение за 3 мес. 200 бэр
  4. Многократное облучение за 1 год 00 бэр

Порядок выполнения работы

Задание 1. Измерение естественного фона в помещении для занятий.

С помощью дозиметра “Мастер –1” измерить естественный фон в помещении для занятий. Дозиметр “Мастер – 1” предназначен для контроля радиационной обстановки на местности, в рабочих и жилых помещениях. Прибор измеряет мощность эквивалентной(экспозиционной) дозы в диапазоне от 0,10 до 9,99 МкЗв/ч (от 10 до 999 МкР/ч). Диапазон энергии излучений от 0,05 до 1,5 МэВ.

Включить прибор. Для проведения измерений нажать кнопку ПУСК, при этом на цифровом табло должны появиться цифры 000, а справа от цифр мигающий знак “СЧ”. Через 36 с после нажатия кнопки ПУСК счет импульсов прекращается, о чем свидетельствует прекращение мигания знака “СЧ”. Установившееся на табло значение показывает мощность эквивалентной дозы в микрозивертах в час. Провести не менее трех измерений, найти среднее значение. Сопоставить полученное значение с соответствующими значениями Норм радиационной безопасности. Сделать соответствующие выводы о радиационной безопасности в помещении.

Задание 2. Измерение естественного фона (уровня радиации) в помещении с источником ионизирующего излучения – рентгеновским дифрактометром.

С помощью дозиметра “Мастер –1” повторить аналогичные измерения, указанные в задании 1.

Сделать соответствующие выводы о радиационной безопасности в помещении.

Задание 3. Проведение дозиметрического контроля защиты рентгеновского дифрактометра.

Ознакомиться с устройством дозиметрического прибора ДРГЗ – 02. Прибор “ДРГЗ — 02” предназначен для контроля радиационной обстановки на местности, в рабочих и жилых помещениях. Прибор измеряет мощность экспозиционной дозы в диапазоне от 0,01 до 100 МкР/с . Тип детектора – сцинтилляционный. Диапазон энергии излучений от 0,015 до 1,25 МэВ.

С помощью прибора ДРГЗ – 02 произвести замеры мощности экспозиционной дозы в непосредственной близости от рентгеновского пучка и за защитой рентгеновского дифрактометра в нескольких точках.

Сделать выводы о соответствии защиты нормам по технике безопасности.

Вопросы для самоконтроля

  1. Виды радиоактивного излучения?
  2. Что такое ионизирующая способность?
  3. Что такое проникающая способность?
  4. Какое излучение обладает наибольшей ионизирующей способностью и какое – наибольшей проникающей способностью?
  5. Что такое поглощенная доза?
  6. Что такое эквивалентная доза?
  7. Что такое предельно допустимая доза?
  8. Основные нормы радиационной безопасности для категории А?
  9. Основные нормы радиационной безопасности для категории Б?
  10. Естественный фон в России?

Краткая теория.

Современное развитие наук вызвало необходимость систематизации и углубления опыта по исследованию влияния на биологические объекты (человеческий организм) различных видов излучения: радиоактивного, ультразвукового, высокочастотного, ультрафиолетового и т.д. В данной работе рассмотрим виды радиоактивного излучения, познакомимся с их основными свойствами, характерными для любого радиоактивного излучения и основами дозиметрического контроля.

Основные свойства радиоактивного излучения

Активность источникамера радиоактивности, выраженная числом актов распада атомных ядер в единицу времени.

Единица измерений:

СИ: Беккерель [ Бк ]

1 Бк равен 1 ядерному превращению за 1 с или 0,027 нКи

Практическая внесистемная единица: Кюри [ Ки ]

1 Ки = 3.7 1010 ядерных превращений за 1 секунду.

Интенсивность излученияэнергия излучения, проходящая через единицу поперечного сечения за единицу времени.

Единица измерений:

СИ:Дж с-1 м-2

Практическая внесистемная единица: эВ с-1 см-2

1 электрон-вольт (эВ) = 1.6 10-19 Дж

Проникающая способностьспособность проникать как через прозрачные, так и через непрозрачные тела.

Глубина проникновения зависит как от материала (через который проникает излучение), так и от вида и энергии (длины волны) излучения.

Источник