Какое свойство отличает монокристалл от аморфного тела прочность

Какое свойство отличает монокристалл от аморфного тела прочность thumbnail

В зависимости от внутреннего строения твердые тела бывают либо кристаллическими, либо аморфными. Молекулы и атомы кристаллов расположены в определенной, повторяющейся последовательности на больших расстояниях, сохраняя так называемый дальний порядок. Атомы и молекулы в аморфных телах размещены неупорядоченно, для них характерен ближний порядок со строением аналогичным жидкому состоянию вещества. Рассмотрим основные отличия кристаллических тел от аморфных, которые проявляются в их физических свойствах.

Какое свойство отличает монокристалл от аморфного тела прочность

Твердые тела

Все твердые тела обладают следующими общими свойствами:

  • Способностью долгое время сохранять форму и объем (геометрические размеры);
  • Наличием упругих сил, которые возникают при небольших изменениях объема от внешнего воздействия (сжатия, растяжения или сдвига).

Какое свойство отличает монокристалл от аморфного тела прочность

Рис. 1. Примеры решеток кристаллических и аморфных тел – кварц аморфный и кристаллический.

Современные ученые исследуют пространственное расположение атомов и молекул в твердых телах с помощью электронных микроскопов, которые позволяют получить изображение объекта с сильным увеличением (до 106 раз). Первый электронный микроскоп был изобретен в 30-х годах прошлого века. В 2018 г. с помощью последних версий этого прибора было получено разрешение 0,39 ангстрем. Напомним, что 1 ангстрем равен 10-8 см. В большинстве кристаллов это соответствует шагу атомной решетки.

Аморфные тела

Смола, воск, графит, изделия из стекла и янтаря, пластмассы — все это примеры аморфных тел (от греч.слова Amorphous — бесформенный, некристаллический).

Отсутствие дальнего порядка в расположении частиц вещества у аморфных тел приводит к тому, что их физические свойства одинаковы во всех направлениях. Такие тела называют изотропными (слово “изотропный” составлено из двух греческих слов: isos — ровный, tropos — направление). Изотропность физических свойств аморфных тел является следствием хаотичного расположения составляющих их молекул и атомов.

Характерной особенностью аморфных тел является отсутствие определенной температуры плавления, то есть отсутствует четкий переход от твердого состояния к жидкому: при нагревании аморфное тело становится только более текучим.

Кристаллические тела

Твердые тела, в которых молекулы и атомы расположены упорядоченно и образуют периодически повторяющуюся структуру, называются кристаллами. Физические свойства кристаллов (упругие, механические, тепловые, электрические, магнитные, оптические) в разных направлениях неодинаковы. Такое свойство называется анизотропностью. Анизотропия кристаллов объясняется тем, что при упорядоченном расположении частиц расстояния между ними и силы взаимодействия (притяжения и отталкивания) оказываются неодинаковыми в разных направлениях.

Различают кристаллические тела двух видов: монокристаллы и поликристаллы. Главным признаком монокристаллов является повторяющееся внутреннее строение (структура) во всем объеме тела.

Поликристалл — это совокупность (набор) сросшихся друг с другом, хаотически ориентированных, небольших кристаллов. Каждый маленький кристалл обладает свойствами анизотропии, но их совокупность — поликристалл — изотропен.

Монокристаллы и поликристаллы

Рис. 2. Монокристаллы и поликристаллы.

Часто встречаются кристаллические тела одинаковые по своему химическому составу, но обладающие очень разные физические свойства. Самый известный пример — это углерод, имеющий две модификации: графит и алмаз. Разное строение кристаллических решеток является причиной того, что алмаз имеет рекордные показатели твердости, а графит из-за его мягкости используется в качестве грифелей для карандашей.

Графит и алмаз

Рис. 3. Графит и алмаз.

Что мы узнали?

Итак, мы узнали, что кристаллические и аморфные тела кроме общих признаков, которые относят их к твердым телам, имеют совершенно разные физические свойства. Аморфные тела обладают изотропными свойствами, а для кристаллов характерна анизотропия физических параметров. Кристаллические тела делятся на монокристаллы и поликристаллы.

Тест по теме

Оценка доклада

Средняя оценка: 4. Всего получено оценок: 239.

Источник

Сравнение атомной решетки кристаллов и аморфных тел

Амо́рфные вещества́ (тела́) (от др.-греч. ἀ «не-» + μορφή «вид, форма») — конденсированное состояние веществ, атомная структура которых имеет ближний порядок и не имеет дальнего порядка, характерного для кристаллических структур. В отличие от кристаллов, стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием — сжатием или электрическим полем, например) обладают изотропией свойств, то есть не обнаруживают различия свойств в разных направлениях. Аморфные вещества не имеют определённой точки плавления: при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (Tg) переходят в жидкое состояние. Вещества, обычно имеющие (поли-)кристаллическую структуру, но сильно переохлаждённые при затвердевании, могут затвердевать в аморфном состоянии, которое при последующем нагреве или с течением времени кристаллизуется (в твёрдом состоянии с небольшим выделением тепла).

Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава, или при конденсации паров на охлаждённую заметно ниже температуры плавления поверхность-подложку. Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации — параметр вещества, слабо зависящий от давления и от температуры (около точки плавления) и сильно зависящий от сложности состава. У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка сотни и тысячи лет; для стёкол достаточно намного меньшей скорости охлаждения — долей-десятков миллисекунд . Кварц (SiO2) также имеет низкую скорость кристаллизации, поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.

Читайте также:  По какому одному свойству можно разбить множество четырехугольников

Из обычных полимеров (пластмасс) только самый простой (полиэтилен) имеет заметную скорость кристаллизации при комнатной температуре — порядка двух лет для мягкого (ПВД) и нескольких лет (даже с добавками-замедлителями) для твёрдого (ПНД) — уже примерно наполовину кристаллизованного вида. Это одна из причин недолговечности изделий из полиэтилена.

К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др. Аморфные вещества могут находиться либо в стеклообразном состоянии (при низких температурах), либо в состоянии расплава (при высоких температурах). Аморфные вещества переходят в стеклообразное состояние при температурах заметно ниже температуры стеклования Tg. При температурах намного выше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии. Вязкость аморфных материалов — непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества.

Структура[править | править код]

Исследования показали, что структуры жидкостей и аморфных тел имеют много общего.
В аморфных и жидких телах наблюдается ближний порядок в упаковке частиц (атомов или молекул).

Также бывают промежуточные полуаморфные (полукристаллические) состояния.

Свойства[править | править код]

Все физические свойства аморфного и поликристаллического состояний одного и того же вещества, кроме плотности, заметно (иногда сильно) отличаются.

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов, из-за отсутствия резких и сильно загрязнённых примесями межкристаллических границ с зачастую абсолютно другим химическим составом. Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфными и кристаллическими и изотропны.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твёрдым веществам, и текучесть, подобно жидкости, поэтому моделируются в механике сплошных сред как вязкоупругие среды. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например, растяжении) аморфные вещества текут. Так, аморфным веществом также является смола (или гудрон, битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда.

В зависимости от электрических свойств, разделяют аморфные металлы, аморфные неметаллы и аморфные полупроводники.

Литература[править | править код]

  • Скрышевский А. Ф. Структурный анализ жидкостей и аморфных тел. — 2-е изд., перераб. и доп.. — М.: Высшая школа, 1980. — С. 302-324. — 328 с.
  • Шульц М. М., Мазурин О. В. Современное представление о строении стёкол и их свойствах. — Л.: Наука, 1988. — 200 с. — ISBN 5-02-024564-X.

См. также[править | править код]

  • Опыт с капающим пеком
  • Неньютоновская жидкость

Источник

Твердыми являются кристаллические и аморфные тела. Кристалл — так в древности называли лед. А потом стали называть кристаллом кварц и горный хрусталь, считая эти минералы окаменевшим льдом. Кристаллы бывают природными и искусственными (синтетическими). Они используются в ювелирной промышленности, оптике, радиотехнике и электронике, в качестве опор для элементов в сверхточных приборах, как сверхтвердый абразивный материал.

Кристаллические тела

Кристаллические тела характеризуются твердостью, имеют строго закономерное положение в пространстве молекул, ионов или атомов, в результате чего образуется трехмерная периодическая кристаллическая решетка (структура). Внешне это выражается определенной симметрией формы твердого тела и его определенными физическими свойствами. Во внешней форме кристаллические тела отражают симметрию, свойственную внутренней «упаковке» частиц. Это определяет равенство углов между гранями всех кристаллов, состоящих из одного и того же вещества.

В них равными будут и расстояния от центра до центра между соседствующими атомами (если они расположены на одной прямой, то это расстояние будет одинаковым на всей протяженности линии). Но для атомов, лежащих на прямой с другим направлением, расстояние между центрами атомов будет уже иным. Этим обстоятельством объясняется анизотропия. Анизотропность — главное, чем отличаются кристаллические тела от аморфных.

Кристаллические и аморфные тела

Более 90% твердых тел можно отнести к кристаллам. В природе они существуют в виде монокристаллов и поликристаллов. Монокристаллы — одиночные, грани которых представлены правильными многоугольниками; для них характерно наличие непрерывной кристаллической решетки и анизотропии физических свойств.

Читайте также:  При какой температуре чеснок теряет полезные свойства

Поликристаллы — тела, состоящие из множества мелких кристаллов, «сросшихся» между собой несколько хаотично. Поликристаллами являются металлы, сахар, камни, песок. В таких телах (например, фрагмент металла) анизотропия обычно не проявляется из-за беспорядочного расположения элементов, хотя отдельно взятому кристаллу этого тела свойственна анизотропия.

Другие свойства кристаллических тел: строго определенная температура кристаллизации и плавления (наличие критических точек), прочность, упругость, электропроводность, магнитопроводность, теплопроводность.

Свойства кристаллических тел

Аморфные — не имеющие формы. Так дословно переводится это слово с греческого. Аморфные тела созданы природой. Например, янтарь, воск, вулканическое стекло. К созданию искусственных аморфных тел причастен человек — стекло и смолы (искусственные), парафин, пластмассы (полимеры), канифоль, нафталин, вар. Аморфные вещества не имеют кристаллической решетки вследствие хаотичного расположения молекул (атомов, ионов) в структуре тела. Поэтому физические свойства для какого-либо аморфного тела изотропны — одинаковы во всех направлениях. Для аморфных тел не существует критической точки температуры плавления, они постепенно размягчаются при нагревании и переходят в вязкие жидкости. Аморфным телам отведено промежуточное (переходное) положение между жидкостями и кристаллическими телами: при низких температурах они твердеют и становятся упругими, кроме того, могут раскалываться при ударе на бесформенные куски. При высоких температурах эти же элементы проявляют пластичность, становясь вязкими жидкостями.

Теперь вы знаете, что такое кристаллические тела!

Источник

КРИСТАЛЛОГРАФИЯ

СИММЕТРИЯ

Лекция 1

Лекция 1

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ И СВОЙСТВАХ КРИСТАЛЛИЧЕСКИХ ТЕЛ

Содержание

1.1. Кристаллография как наука.

1.2. Виды твёрдых тел.

1.3. Отличительные особенности кристаллических и аморфных тел.

1.4. Особые свойства кристаллов.

1.5. Виды связей в кристаллах.

1.6. Силы взаимодействия частиц.

1.7. Кристаллическая решётка. Элементарная ячейка.

1.8. Индексы Миллера.

1.9. Рентгеноструктурный анализ.

КРИСТАЛЛОГРАФИЯ КАК НАУКА

Кристаллография– наука об атомно-молекулярном строении, симметрии, физических свойствах, образовании и росте кристаллов. Как самостоятельная наука существует с середины XVIII века. Сначала она развивалась как геометрическая кристаллография в тесной связи с минералогией, которая устанавливала закономерности огранки природных кристалликов, имеющих естественную форму правильных многогранников (Р. Гаюи). Затем появилась теория симметрии внешней формы кристаллов (А.В. Гадолини).

Геометрическая кри­сталлографияопределяет совокупность методов описания кристаллов и зако­номерности их огранки. В этой теории возникла гипотеза об упорядоченном трёхмерно-периодическом расположении частиц в кристалле с образованием кристаллической решётки (О. Браве, Е.С. Фёдоров, А. Шёнфлис).

Экспериментальными исследованиями дифракции рентгеновских лучей на кристаллах было подтверждено решёточное строение кристаллов и положено начало структурной кристаллографии(М. Лауэ). В качестве основных структурная кристаллографияиспользует метод рентгеноструктурного анализа, электроно- и нейтронографии, а также методы оптической и электронной спек­троскопии. В результате всех исследований к настоящему времени определена структура более 105химических веществ.

Предметом кристаллохимии является изучение законов взаимного расположения атомов и молекул в кристал­лах, их химических связей и плотнейших упаковок, а также явлений изо- и по­лиморфизма.

Кристаллооптика занимается вопросами прохождения света через прозрачные анизотропные кри­сталлы, сформулировала многие закономерности взаимного влияния симметрии и анизотропии физических свойств.

Кристаллофизикарассматривает в едином русле форму, симметрию и физические свойства кристаллов; занимается вопросами исследования механических, оптических, электрических, магнитных и других свойств кристаллов. В этой части кристаллография смыкается с физикой твёрдого тела.

В кристаллографии изучаются разнообразные дефекты построения идеальной кристаллической решётки: точечные, линейные (дислокации), поверхностные и объёмные. Многие из них появляются в результате роста кристалла или при внешнем воздействии на кристалл напряжением, облучением и т. д.

Для современной кристаллографиихарактерно дальнейшее изучение атомной и дефектной структур кристаллов, процессов их роста, поиск новых свойств и материалов. Основная задача кристаллографии как науки на сего­дняшний день – получение новых материалов с важными физическими свойст­вами. К решению этой задачи необходимо подходить комплексно, рассматривая атомную структуру, анизотропию свойств, взаимодействие кристаллов с окру­жающей средой в их взаимодействии.

В современной кристаллографии исследуются строение и свойства различ­ных агрегатов из микрокристалликов (поликристаллов, текстур, керамик), а также вещества с атомной упорядоченностью, близкой к кристаллической (жидкокристаллические вещества, полимерные и композиционные материалы).

Симметричные и структурные закономерности, изучаемые в кристаллографии, используются при рассмотрении общих закономерностей строения и свойств аморфных тел и жидкостей, полимеров, квазикристаллов, макромо­лекул, надмолекулярных аморфно-кристаллических, а также биологических структур. Поэтому современная кристаллография представляет собой обобщён­ную кристаллографию,математический аппарат которой основан на дискрет­ной геометрии, теории групп, тензорном исчислении и теории преобразований Фурье.

ВИДЫ ТВЕРДЫХ ТЕЛ

Твёрдое телосостоит из большого числа частиц. Этими частицами могут быть атомы, атомные остатки, ионы, молекулы, макромолекулы. Концентрация частиц в твёрдых телах высока: (1026 – 1029) м-3 . Расстояния между частицами составляют несколько нанометров.

Читайте также:  На какие свойства влияет пористость материала

Структуру твёрдых телисследуют дифракционными методами, основан­ными на дифракции рентгеновских лучей, электронов, нейтронов, используя при этом стандартные установки: рентгеновский дифрактометр, электронный микроскоп, ионный проектор и др. Физика твёрдого тела и кристаллография имеют прямое отношение к нанотехнологиям (рис. 1.1). Нанотехнологии разрабатываются на эффектах, возникающих на уровне атомных размеров.

Свойства твёрдых телобъясняются многими факторами и зависят от химического состава вещества, типа частиц, их внутреннего расположения, типа химической связи между частицами.

Свойства кристаллов широко применяют­ся в оптике, акустике, радиоэлектронике, металловедении, металлургии, химии, медицине. Твёрдые тела встречаются в природе в виде кристаллических и аморфных тел, а также полимеров. В физике к твёрдым телам относят только кристаллические тела.

                           

Рис. 1.1. Электронная микрофотография структуры алмаза вдоль направления [110]

Кристаллы– твёрдые тела, обладающие трёхмерной периодической атомной структурой и имеющие при равновесных условиях образования естественную форму правильных симметричных многогранников. Атомная струк­тура кристалла описывается как совокупность повторяющихся в пространстве одинаковых элементарных ячеек, имеющих форму параллелепипеда. Кристал­лы, выросшие в равновесных условиях, имеют форму правильных многогран­ников той или иной симметрии. Грани кристалла плоские, а рёбра между гра­нями — прямолинейные. Выросшие в неравновесных условиях кристаллы не имеют правильной огранки, но сохраняют кристаллическую структуру и все присущие данной структуре свойства. Неравновесные условия кристаллизации приводят к отклонениям только формы от правильного многогранника – к ок­руглости граней и рёбер. Примерами кристаллических тел являются горный хрусталь, поваренная соль, драгоценные камни.

В кристаллахчастицы расположены правильными, симметричными, периодически повторяющимися рядами, сетками, решётками. Кристаллы вырас­тают в форме многогранников (рис. 1.2). Способность кристалла приобретать конкретную форму – это проявление его физических свойств, определяющихся его структурой, симметрией и химическими связями между его частицами.

Рис. 1.2. Внешний вид кристаллических тел

Кристаллические тела встречаются в природе в виде моно- и поликристаллов. Монокристаллы(большие одиночные кристаллы) получают при созда­нии специальных условий кристаллизации (рис. 1.3).

      

Рис. 1.3.Монокристаллы кремния

Монокристалл состоит из блоков мозаики,размер которых в монокристалле составляет (10–6–10–8) м. Так как кристаллическая решетка в соприка­сающихся блоках имеет различную ориентацию, то возникает переходный слой, в котором решетка постепенно переходит от одной ориентации, свойст­венной одному блоку, к другой ориентации, свойственной другому блоку. По­этому решетка в этом слое искажена по сравнению с решеткой идеального кри­сталла. Поликристаллсостоит из беспорядочно ориентированных кристалли­ков (кристаллитов) малых размеров (рис. 1.2, справа). Размер кристаллитов по­рядка 10–4 м.

Аморфные тела– вещества, в атомном строении которых нет порядка: частицы расположены беспорядочно, независимо друг от друга (воск, пластилин). Отличительной особенностью аморфных тел является изотропностьвсех физических и механических свойств.

Полимерысостоят из многочисленных звеньев одинакового химического состава – макромолекул. Например, полимерным материалом является политетрафторэтилен, химическая формула которого (СF2)n, где n = 13.

К особым видам твёрдых тел относятся жидкокристаллические тела,нашедшие широкое применение в телевидении и сотовой связи, и закристаллизованные жидкости,которые обладают особыми свойствами.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ КРИСТАЛЛИЧЕСКИХ И АМОРФНЫХ ТЕЛ

Рассмотрим некоторые свойства твёрдых тел, которые характеризуют их как кристаллические или аморфные тела.

1. Кристаллыимеютупорядоченное расположение частиц на сколь угоднобольших расстояниях. Частицы расположены в узлах кристаллической решётки.Аморфные тела имеют упорядоченноерасположение частиц на небольших расстояниях (в так называемых группах) (рис.1. 4). Расположение частиц в веществе характеризуется наличием дальнего и ближнего порядков.

           

Рис. 1.4. Вещество H2O в двух агрегатных состояниях: воды (1) и льда (2)

2. Дальний порядокупорядоченное расположение частиц на сколь угодно больших расстояниях от рассматриваемой частицы.

– характеризуется коэффициентом α.

Ближний порядокупорядоченное расположение частиц на малых расстояниях от рассматриваемой частицы.

– характеризуется коэффициентом β.

Агрегатное состояние вещества коэффициент
дальнего порядка
α
коэффициент
ближнего порядка
β
кристаллические тела 1 1
аморфные тела < 1 > 0
жидкости 0 1
газы 0 0

3. Кристаллические и аморфные тела различаются ходом температурной зависимости температуры плавления.

4. Для кристаллов характерно наличие анизотропии. Анизотропия– зависимость свойств вещества от направления в кристалле. Например, слюда по-разному раз­ламывается в различных направлениях. Анизотропией диэлектрической прони­цаемости объясняется существование в кристаллах турмалина двойного луче­преломления (рис. 1.5).

Рис. 1.5. Двойное лучепреломление в кристалле турмалина

   Обладают анизотропией очень многие физические и механичес­кие свойства кристаллических тел, например: теплопроводность, электропроводность, скорость света, двойное лучепреломление. Аморфные тела изотропны,у них свойства одинаковы по всем направлениям в веществе. Примером являет­ся пластилин, который легко сжимается в любых направлениях.

Источник