Какое свойство общее для жидкостей и газов

Какое свойство общее для жидкостей и газов thumbnail
Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характерное свойство жидких и газообразных тел – их текучесть, то есть малая сопротивляемость деформации сдвига: если скорость сдвига стремится к нулю, то силы сопротивления жидкости или газа этой деформации также стремятся к нулю. Иными словами, жидкие и газообразные вещества не обладают упругостью формы – они легко принимают форму того сосуда, в котором находятся.

Для изменения объема V жидкости или газа требуются конечные внешние силы. При изменении объема в результате внешних воздействий в жидкости и газе возникают упругие силы, которые уравновешивают действие внешних сил. Упругие свойства жидкости и газа определяются тем, что отдельные части их действуют друг на друга (взаимодействуют) или на соприкасающиеся с ними тела с силой, зависящей от степени сжимаемости жидкости или газа. Соответствующее взаимодействие характеризуют величиной, называемой давлением P.

Рассмотрим жидкость, находящуюся в равновесии, то есть в условиях, когда отдельные ее части не перемещаются друг относительно друга. Выделим элементарную площадку в жидкости DS (см. рис. 5.1). На DS действуют силы со стороны других частей жидкости, равные по величине, но противоположные по направлению. Для выяснения характера этих сил мысленно уберем жидкость над DS, и заменим ее равнодействующей силой Df, так, чтобы состояние других частей не было нарушено. Эти силы должны быть перпендикулярны DS, так как в противном случае тангенциальная составляющая сил привела бы частицы жидкости в движение вдоль DS, и равновесие было бы нарушено. Следовательно, равновесие жидкости будет иметь место, когда равнодействующая всех сил Df перпендикулярна DS.

Силу Df , отнесенную к единице поверхности площадки DS, называют давлением P, то есть

(5.1.1)

Если сила Df распределяется по DS неравномерно, то выражение (5.1.1) определяет среднее значение давления Pср. Чтобы найти давление в данной точке, необходимо устремить площадь DS к нулю: Давление в газе определяется аналогичным образом. Давление – скалярная величина и в системе СИ измеряется в Паскалях – Па = Н/м2.

Дата добавления: 2014-11-18; Просмотров: 2453; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

Известно, что все, что окружает человека, включая и его самого, — это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они — из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

свойства жидкостей

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма — сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде — водород, азот, кислород и другие.
  3. Жидкие металлы — ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры — типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.

назовите свойства жидкостей

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: «Назовите свойства жидкостей» человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

основные свойства жидкости

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.
Читайте также:  Каким из перечисленных свойств обладает любой кристалл

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, — это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

физические свойства жидкости

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода — очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: «Назовите свойства жидкостей» сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой — воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

свойства жидкостей и газов

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к «хождению» по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них — текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.

  1. Жидкость — газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды — часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость — насыщенный пар.
  2. Жидкость — твердые вещества. Особенно на таких системах заметно еще одно свойство — смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).

    свойства жидкостей и твердых тел

В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Читайте также:  Какие свойства воздуха используют в музыкальных инструментах для

Главное отличие — это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение — это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация — процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе — испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

общие свойства газов и жидкостей

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества — одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел — это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • «лизун», которым играют дети;
  • «хенд гам», или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

механические свойства жидкости

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости — достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Источник

В гидромеханике принято объединять жидкости, газы и пары под одним названием – жидкости. Это связано с тем, что законы движения жидкостей и газов (паров) одинаковы, если их скорости значительно ниже скорости звука. Жидкостями
называются все вещества, обладающие текучестью при приложении к ним самых незначительных сил сдвига.

При выводе основных закономерностей в гидромеханике также вводится понятие идеальной жидкости, которая, в отличие от реальной (вязкой) жидкости, абсолютно несжимаема под действием давления, не изменяет плотности при изменении температуры и не обладает вязкостью.

Масса жидкости, содержащаяся в единице объема V
, представляет собой плотность тела

.

Величина, обратная плотности и представляющая собой объем, занимаемый единицей массы, называется удельным объемом:

.

Вес единицы объема жидкости называется удельным весом:

.

Удельный вес жидкости и её плотность связаны соотношением

.

Плотность, удельный объем и удельный вес относятся к важнейшим характеристикам жидкостей.

Реальные жидкости делятся на капельные и упругие. Капельные жидкости несжимаемы и обладают малым коэффициентом объемного расширения. Объем упругих жидкостей изменяется при изменении температуры и давления (газы, пары). В большинстве технических задач газы полагают идеальными. Состояние идеального газа описывается уравнением Клапейрона-Менделеева

,

где  – универсальная газовая постоянная, равная 8314 Дж/(кмоль·К).

 Это уравнение можно записать для расчета плотности газа

.

 В ряде задач необходимо учитывать также состояние жидкостей. Для изоэнтропийных процессов в жидкости можно применять уравнение Тета

,

где – давление молекулярного взаимодействия; n коэффициент, зависящий от свойств жидкостей. Для воды » 3,2×108
Па, n » 7,15.

В зависимости от температуры и давления вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. В твердых телах молекулы взаимосвязаны между собой, расположены в определенном порядке и совершают только тепловое колебательное движение. Вероятность покинуть занимаемое молекулой (атомом) место мала. Поэтому твердые тела сохраняют заданную форму и объем.

Читайте также:  Какое общее свойство имеют следующие тела земля мяч

В жидкостях тепловое движение молекул существенно выше, часть молекул получает достаточную энергию возбуждения и покидает свои места. Поэтому в жидкости молекулы перемещаются по всему объему, но их кинетическая энергия остается недостаточной для выхода за пределы жидкости. В этой связи жидкости сохраняют свой объем.

В газах тепловое движение еще больше, молекулы удалены настолько, что взаимодействие между ними становится недостаточным для удержания на определенном удалении, т.е. газ имеет возможность беспредельно расширяться.

Свободное перемешивание молекул в жидкостях и газах приводит к тому, что они изменяют свою форму при приложении сколь угодно малого силового действия. Это явление называют текучестью. Жидкости и газы принимают форму того сосуда, в котором они содержатся.

В результате хаотического движения молекулы в газе претерпевают столкновения. Процесс столкновения молекул характеризуется эффективным диаметром молекул, под которым понимается минимальное расстояние между центрами молекул при их сближении. Расстояние, которое молекула проходит между столкновениями, называется свободным пробегом молекулы.

В результате переноса количества движения при переходе молекул, движущихся в слоях с разными скоростями, возникает касательная сила, действующая между этими слоями. Свойство жидкости и газа сопротивляться сдвигающим усилиям называют вязкостью.

Расположим в жидкой среде пластину 1 на некотором расстоянии от стенки (рис. 2.1).

 

Пусть пластина движется относительно стенки 2 со скоростью w. Так как жидкость будет увлекаться пластиной, то в зазоре установится послойное течение жидкости со скоростями, изменяющимися от 0 до w . Выделим в жидкости слой толщиной dy. Очевидно, что скорости нижней и верхней поверхностей слоя будут отличаться по толщине на dw. В результате теплового движения молекулы непрерывно переходят из нижнего слоя в верхний и обратно. Так как их скорости различны, то их количества движения тоже различны. Но, переходя из слоя в слой, они должны принимать количество движения, характерное данному слою, т.е. будет иметь место непрерывное изменение количества движения, от чего появится касательная сила между слоями.

Обозначим через dT касательную силу, действующую на поверхность слоя площадью dF, тогда

.

Опыт показывает, что касательная сила Т, которую надо приложить для сдвига, тем больше, чем больше градиент скорости , характеризующий изменение скорости, приходящейся на единицу расстояния по нормали между слоями. Кроме того, сила Т
пропорциональна площади соприкосновения F слоев, т.е.

.

В такой форме уравнение выражает закон внутреннего трения Ньютона, согласно которому напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости.

Знак минус в правой части уравнения указывает на то, что касательное напряжение тормозит слой, движущийся с относительно большой скоростью.

Коэффициент пропорциональности  в приведенных уравнениях называется динамическим коэффициентом вязкости.

Размерность динамического коэффициента вязкости в СИ может быть выражена как

Вязкость жидкостей также можно характеризовать кинематическим коэффициентом вязкости

.

Вязкость капельных жидкостей снижается с возрастанием температуры, газов – растет. При умеренном давлении вязкость газов от давления не зависит, однако, начиная с некоторого давления, вязкость возрастает при его увеличении.

Причины разных зависимостей от температуры для газов и жидкостей в том, что вязкость газов имеет молекулярно-кинетическую природу, а капельных жидкостей зависит от сил сцепления между молекулами.

В ряде процессов химической технологии капельная жидкость при движении соприкасается с газом (или паром) или с другой капельной жидкостью, практически не смешивающейся с первой.

Силовое взаимодействие молекул, которые находятся на поверхности жидкости, и молекул, расположенных вдали от нее, неодинаково. Молекула, расположенная на поверхности, находится в симметричном силовом состоянии, верхняя часть силового поля ее вынуждена взаимодействовать с молекулами, находящимися под поверхностью. В результате этого потенциальная энергия связи в поверхностном слое увеличивается, а сам слой находится в более напряженном состоянии. Это явление называют поверхностным натяжением.

Потенциальная энергия связи в поверхностном слое

,

где s – коэффициент поверхностного натяжения; dF представляет собой поверхность жидкости, имеющей порядок dl2.

Энергию dE можно представить как некоторую силу, совершающую работу на пути dl, поэтому

,

или

.

Таким образом, поверхность жидкости стягивается силой dZ пропорциональной длине, на которой она действует. Эту силу называют силой поверхностного натяжения.

Поверхностное натяжение проявляется в том, что выделенный объем жидкости стремится принять сферическую форму, особенно это заметно на малых объемах – каплях. Действие силы поверхностного натяжения приводит к увеличению давления внутри капли, направленного внутрь жидкости по нормали к ее поверхности.

Поверхностное натяжение уменьшается с увеличением температуры. С величиной  связаны характеристики смачивания капельными жидкостями твердых материалов. Смачивание оказывает существенное влияние на гидродинамические условия протекания процессов в абсорбционных и ректификационных аппаратах, конденсаторах и т.п.

Поверхностное натяжение значительно влияет на диспергирование одной жидкости в другой, с ней не смешивающейся, и поэтому существенно сказывается на гидродинамических условиях проведения процессов жидкостной экстракции.

Источник