Какое свойство материала называют упругостью

Какое свойство материала называют упругостью thumbnail

Материалы это материальная субстанция, используемая для производства, изготовления вещей или преобразования в другие материальные субстанции, объекты и предметы, на практике это — продукция, которую расходуют с изменением формы, состава или состояния при изготовлении изделий.  В зависимости от выбранного материала окончательное изделие будет обладать тем или иным свойством.

Механические свойства

Упругостью твердого тела называют его свойство самопроизвольно восстанавливать первоначальную форму и размеры после прекращения действия внешней силы. Упругая деформация полностью исчезает после прекращения действия внешней силы, поэтому ее принято называть обратимой.

Пластичностью твердого тела называют его свойство изменять форму и размеры под действием внешних сил не разрушаясь, причем после прекращения действия силы тело не может самопроизвольно восстановись свои размеры и форму, и в теле остается некоторая остаточная деформация, называемая пластической деформацией.

Пластическую, или остаточную, деформацию, не исчезнувшую после снятия нагрузки, называют необратимой.

Основными характеристиками деформативных свойств строительного материала являются: относительная деформация, модуль упругости Юнга и коэффициент Пуассона.

Внешние силы, приложенные к телу, вызывают изменение межатомных расстояний, отчего происходит изменение размеров деформируемого тела на величину dl в направлении действия силы.

Относительная деформация равна отношению абсолютной деформации dl к первоначальному линейному размеру l тела.

Формула расчета: є = dl / l,

где є — относительная деформация.

Модуль упругости (модуль Юнга) связывает упругую деформацию є и одноосное напряжение s линейным соотношением, выражающим закон Гука.

Формула расчета: є = s / E ,

где E — модуль Юнга.

При одноосном растяжении (сжатии) напряжение определяется по формуле:

s = Р / F,

где Р — действующая сила; F — площадь первоначального поперечного сечения элемента.

Примеры строительных материалов по данному свойству:

Модуль упругости представляет собой меру жесткости материала. Материалы с высокой энергией межатомных связей (они плавятся при высокой температуре) характеризуются и большим модулем упругости.

Зависимость модуля упругости Е ряда материалов от температуры плавления ( tпл. ) смотри в таблице.

Какое свойство материала называют упругостью

Модуль упругости Е связан с другими упругими характеристиками материала посредством коэффициента Пуассона. Одноосное растяжение (сжатие) sz вызовет деформацию по этой оси — єz и сжатие по боковым направлениям — єx и — єy, которые у изотропного материала равны между собой.

Коэффициент Пуассона, или коэффициент поперечного сжатия µ равен отношению:

µ = — єx / єz.

Примеры строительных материалов по данному свойству:

Коэффициент Пуассона бетона — 0,17 — 0,2, полиэтилена — 0,4.

Прочность — свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами (стесненная усадка, неравномерное нагревание и т. п.).

Прочность материала оценивают пределом прочности (временным сопротивлением) R, определенным при данном виде деформации.

Схема диаграмм деформаций.

Какое свойство материала называют упругостью

Для хрупких материалов (природных каменных материалов, бетонов, строительных растворов, кирпича и др.) основной прочностной характеристикой является предел прочности при сжатии.

Предел прочности при осевом сжатии равен частному от деления разрушающей силы на первоначальную площадь поперечного сечения образца (куба, цилиндра, призмы).

Формула расчета: Rсж = Рразр / F,

где Rсж — предел прочности при осевом сжатии; Рразр — разрушающая сила; F — первоначальная площадь поперечного сечения образца.

Предел прочности при осевом растяжении Rр используется в качестве прочностной характеристики стали, бетона, волокнистых и других материалов.

В зависимости от соотношения Rр / Rсж можно условно разделить материалы на три группы:

1) материалы, у которых Rр > Rсж (волокнистые — древесина и др.) ;
2) Rр = Rсж (сталь);
3) Rр < Rсж (хрупкие материалы — природные камни, бетон, кирпич).

Размерность: (Мпа).

Предел прочности при изгибе определяют путем испытания образца в виде балочек на двух опорах.

Формула расчета: Rр•и = М / W,

где Rр•и — предел прочности при изгибе; М — изгибающий момент; W — момент сопротивления.

Размерность: (Мпа).

Коэффициент конструктивного качества (к.к.к.) материала равен отношению показателя прочности R к относительной средней плотности pо.

Формула расчета: к.к.к. = R / pо.

Следовательно, это прочность, отнесённая к единице средней плотности. Лучшие конструкционные материалы имеют высокую прочность при малой средней плотности.

Примеры значений к.к.к. для некоторых строительных материалов:

стеклопластик — 225; древесина (без пороков) — 200; сталь высокопрочная — 127; сталь — 51; легкий конструкционный бетон — 22,2; тяжелый бетон — 16,6; легкий бетон — 12,5; кирпич — 5,56.

Читайте также:  У какого атома больше выражены металлические свойства

Твердостью называют свойство материала сопротивляться проникновению в него другого, более твердого тела.

Твердость минералов оценивают шкалой Мооса, представленной десятью минералами, из которых каждый последующий своим острым концом царапает все предыдущие. Эта шкала включает минералы в порядке возрастающей твердости от 1 до 10.

1. Тальк, Mg3[Si4O10][OH]2 — легко царапается ногтем.
2. Гипс, CaSO4 • 2H2O — царапается ногтем.
3. Кальцит, CaCO3 — легко царапается стальным ножом.
4. Флюорит (плавиковый шпат), CaF — царапается стальным ножом под небольшим нажимом.
5. Апатит, Ca5 [PO4]3 F — царапается ножом под сильным нажимом.
6. Ортоклаз, К2О.Al2О3.6SiO2 — царапает стекло.
7. Кварц, SiO2; топаз, Al2 [SiO4] (F, OH)2; корунд, Al2 О3; алмаз, С — легко царапают стекло, применяются в качестве абразивных (истирающих и шлифующих) материалов.

Твердость древесины, маталлов, бетона и некоторых других строительных материалов определяют, вдавливая в них стальной шарик или твердый наконечник (в виде конуса или пирамиды). В результате испытания вычисляют число твердости
HB = P / F,

где F — площадь поверхности отпечатка.

От твердости материалов зависит их истираемость: чем выше твердость, тем меньше истираемость.

Истираемость оценивают потерей первоначальной массы образца материала, отнесенной к площади поверхности истирания F.

Формула расчета: И = ( m1 — m2 ) / F,

где m1 и m2 — масса образца до и после истирания.

Размерность: (г/кв.см).
Это свойство важно для эксплуатации дорог, полов, ступеней лестниц, и т. п.

Износом называют свойство материалов сопротивляться одновременному воздействию истирания и ударов.

Сопротивление удару — способность материала сопротивляться действию удара падающего груза. Для определения прочности материалов при ударе применяются специальные копры.

Физические свойства

Истинная плотность — масса единицы объёма абсолютно плотного материала.

Формула расчета: p = m / Vа,

где m — масса материала; Vа — его объем в плотном состоянии.

Размерность: (г/куб.см, кг/куб.м).

Средняя плотность — масса единицы oбъема материала в естественном состоянии.
pо = m / V,

где m — масса материала; Vс — его объём вместе с порами.
Размерность: (г/куб.см, кг/куб.м).

Значение средней плотности данного материала в сухом и влажном состоянии связаны соотношением:
p = p / (1 + Wм),

где Wм — количество воды в материале, доли от его массы.

Насыпная плотность ( pн ) — масса единицы объема рыхло насыпанных зернистых или волокнистых материалов (цемента, песка, гравия, щебня, гранулированной минеральной ваты и т. п.).

Истинная пористость — степень заполнения объема материала порами.

Формула расчета 1: П = Vп / V,

где Vп — объем пор; V — объём материала с порами.

Размерность: в процентах от объема.

Формула расчета 2: П = [1 — ( pо / p)] 100,

где pо — средняя плотность материала; p — истинная плотность материала.

Размерность: в процентах от объема.

Основные свойства строительных материалов представлены в таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями воды

Гигроскопичность или сорбционная влажность — свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха.

Поглощение влаги из воздуха называется сорбцией.

Примеры строительных материалов по данному свойству:

Древесина, теплоизоляционные, стеновые и другие пористые материалы обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью.

Водопоглощение определяют по объему и массе.

Водопоглощение по объему — степень поглощения материала водой.

Формула расчета: Wо = ( mв — mс ) / V • 100,

где mв — масса образца материала, насыщенного водой; mс — масса образца в сухом состоянии; V — объём материала.

Размерность: (%).

Водопоглощение по массе — определяют по отношению к массе сухого материала.

Формула расчета: Wм = ( mв — mс ) / mс 100,

где mв — масса образца материала, насыщенного водой; mс — масса образца в сухом состоянии.

Размерность: (%).

Примеры строительных материалов по данному свойству:

Водопоглощенние различных материалов колеблется в широких пределах: гранита — 0,02- 0,7%, тяжелого плотного бетона — 2-4%, кирпича — 8-15%, пористых теплоизоляционных материалов — 100% и больше.

Связь между водопоглощением по массе и водопоглощением по объему определяется соотношением:

Wо = Wм • pо,

где pо — средняя плотность.

Коэффициент насыщения.
Водопоглощение используют для оценки структуры материла, привлекая для этой цели коэффициент насыщения пор водой равный отношению водопоглощения по объему к пористости:

Читайте также:  Какие лечебные свойства чабреца

kн = Wо / П,

где П — истинная пористость.

Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), тогда Wо = П.

Коэффициент размягчения — отношение прочности материала, насыщенного водой, к прочности сухого материала.

Коэффициент размягчения характеризует водостойкость материала, он изменяется от 0 (размокшие глины и др.) до 1 (металлы и др.). Природные и искусственные каменные материалы не применяют в строительных конструкциях, находящихся в воде, если их коэффициент размягчения меньше 0,8.

Формула расчета: kр = Rв / Rс,

где Rв — прочность материала, насыщенного водой; Rс — прочности сухого материала.

Водопроницаемость — это свойство материала пропускать воду под давлением.

Коэффициент фильтрации характеризует водопроницаемость материала.
Формула расчета: kф = Vв a / [ S( P1 — P2 ) t],

где kф = Vв — количество воды в куб.м, проходящей через стенку площадью S = 1 кв.м, толщиной а = 1 м за время t = 1 ч при разности гидростатического давления на границах стенки ( P1 — P2 ) = 1 м вод. cт.

Размерность: (м/ч).

Газо- и паропроницаемость.
При возникновении у поверхности ограждения разности давления газа происходит его перемещение через поры и трещины материала.

Коэффициент газопроницаемости характеризует газо- и паропроницаемость:

Формула расчета: kг = aVp / ( StdP),

где Vp — масса газа или пара (плотностью p), прошедшего через стенку площадью S и толщиной а за время t при разности давлений на гранях стенки dP.

Размерность: [г/(м•ч•Па)].

Относительные значения паро-газопроницаемости некоторых строительных материалов представлены на таблице.

Какое свойство материала называют упругостью

Усадкой (усушкой) называют уменьшение размеров материала при его высыхании. Она вызывается уменьшением толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала.

Набухание (разбухание) происходит при насыщении материала водой. Полярные молекулы воды, проникая в промежутки между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки вокруг частиц, исчезают внутренние мениски, а с ними и капиллярные силы.

Усадка некоторых строительных материалов представлена на таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями тепла

Морозостойкость ( F, Мрз) — свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание без значительной потери в массе и прочности.

Морозостойкость материала количественно оценивается маркой по морозостойкости.

Примеры строительных материалов по данному свойству:

Легкие бетоны, кирпич, керамические камни для наружных стен зданий обычно имеют морозостойкость Мрз 15, Мрз 25, Мрз 35. Бетон, применяемый в строительстве мостов и дорог, должен иметь марку Мрз 50, Мрз 100 и Мрз 200, гидротехнический бетон — до Мрз 500.

Теплопроводностью называют свойство материала передавать тепло от одной поверхности к другой.

На практике удобно судить о теплопроводности по средней плотности материала. Известна формула В.П. Некрасова, связывающая теплопроводность со средней плотностью каменного материала, выраженной по отношению к воде. Значение теплопроводности по этой формуле вычисляется следующим образом:

1,16 • SQRT(0,0196 + 0,22 • pо — 0,16),

где SQRT( ) — операция вычисления квадратного корня; pо — средняя плотность материала.

Размерность: Вт/(мК).

Теплоёмкость определяется количеством тепла, которое необходимо сообщить 1 кг данного материала, чтобы повысить его температуру на 1°С.

Примеры строительных материалов по данному свойству:

Теплоемкость неорганических строительных материалов (бетонов, кирпича, природных каменных материалов) изменяется в пределах от 0,75 до 0,92 кДЖ/(кг •°С). Теплоёмкость сухих органических материалов (например, древесины) — около 0,7 кДЖ/(кг •°С), вода имеет наибольшую теплоемкость — 1 кДЖ/(кг •°С), поэтому с повышением влажности теплоемкость возрастает.

Огнеупорность — свойство материала выдерживать длительное воздействие высокой температуры (от 1580°С и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей.

Тугоплавкие материалы размягчаются при температуре выше 1350°С.

Горючесть — способность материала гореть.

Материалы делятся на горючие (органические) и негорючие (минеральные).

Добавлено:
23.10.2019 15:13:04

Источник

Заказать геологию

Геологические изыскания

Тел:   +7 (495) 641-38-44
Москва, Олонецкий пр. д. 4/2

e-mail: mail@buroviki.ru

выполняем работы по г. Москве
и всей Московской области

Библиотека

Свойства стройматериалов:

Архитектурно-строительные
Основные требования
Пластичные и хрупкие материалы
Технологические свойства
механические свойства
газопроницаемость
теплопроводность материалов
огнестойкость материалов
огнеупорность и хладостойкость
морозостойкость материалов
упругость,твердость,истираемость
звукоизоляция и звукопоглощение
светопроницаемость
химические свойства
радиационная стойкость
Экономические требования
 

Читайте также:  Какие камни подходят скорпиону женщине и их свойства

Библиотека

Нормативы, CНиПы, СП
Статьи по геологическим изысканиям
Новости отрасли
Полезные ресурсы
Статическое зондирование грунтов
Фундамент — общие сведения
Грунтовые воды
Опасные геологические явления
Лабораторные исследования грунтов
Общие сведения о грунтах
Бурение геологических скважин
Свойства строительных материалов
Для студентов

ООО «Буровики»:

Контакты
Рекомендательные письма
Допуски и Лицензии
Цены и сроки, прайс лист
Написать письмо

Геология    Порядок работ    Библиотека    Цены    Контакты

Главная > Библиотека > Свойства материалов > Механические свойства

Упругость — свойство материалов восстанавливать форму и объем (у твердых
материалов) или только объем (у вязких и жидких) после прекращения действия деформирующих сил. Наибольшее напряжение, при котором еще не обнаруживается пластическая (остаточная) деформация, называется пределом
упругости. Различают также условный предел упругости — наименьшее напряжение, которое вызывает появление необратимой пластической деформации. В границах упругих деформаций действителен закон Р.Гука- деформация материала пропорциональна действующей силе (каково удлинение,
такова и сила).
Этот закон, сформулированный в 1676 г., был позднее уточнен Т. Юнгом в его современном определении — напряжение при упругой деформации тела пропорционально относительной деформации

Модуль упругости для данного материала — величина постоянная, измеряемая, как и
напряжение, в паскалях (Па). Модуль упругости характеризует жесткость материала (изделия)-его способность сопротивляться образованию деформации при воздействии внешних сил. В случае простых деформаций (в пределах закона Гука) при растяжении -сжатии жесткость численно определяется как произведение модуля упругости  на площадь поперечного сечения. Отношение модуля Юнга к средней плотности материала называют удельной жесткостью (или удельным модулем упругости), Характеристики жесткости материала широко используются
при решении задач сопротивления материалов.

Твердость — способность материала сопротивляться проникновению в него другого, более твердого тела. В более общем виде это свойство характеризует стойкость материала к деформированию или разрушению при местном силовом воздействии. Твердость определяется структурой материала. Количественно показатель твердости оценивают различными способами, например, при испытании металлов и пластмасс по диаметру
отпечатка от вдавливаемого в поверхность испытываемого материала специального индентора (шарика). Числа твердости являются вторичными, производными механическими характеристиками, зависящими от первичных основных характеристик (модуля упругости, предела прочности и др.), а также от принятого способа испытания. Твердость каменных материалов оценивают по методу Мооса с помощью минералов, указанных в шкале твердости, содержащей 10 эталонов.

Характеристика твердости имеет значение при выборе материалов для покрытия полов и дорожных покрытий, при определении способа механической обработки поверхности мате¬риалов, а также может быть использована для косвенной оценки других
свойств данного материала (прочность, истираемость и др.).

Истираемость
— свойство материала уменьшайся в объеме и массе вследствие разрушения поверхностного слоя под действием истирающих усилий (обычно в условиях трения с применением абразива). Количественно истираемость оценивается потерей массы образца, отнесенной к площади истирания в г/см2.

Сопротивление
истираемости -свойство, обратное истираемости, характеризует главный эксплуатационный показатель материалов для полов и других покрытий, подвергаемых трению. Показатели истираемости (И) различных строительных материалов по потере массы в г/см2 (для шлакоситаллов И =0,01-0,03, гранита-0,03-0,07, керамических плиток для по¬лов -0,08, поливинилхлоридных линолеумов -0,02-0,04, релина-0,03, полимерцементных покрытий полов -0,04) трудносопоставимы, поскольку плотности этих материалов находятся в весьма широких
пределах. Поэтому такой способ более пригоден для сопоставления внутри отдельных групп материалов. Для оценки истираемости применяют и другие способы, включая данные ускоренных натурных испытаний (например, в турникетах метро).

Выносливость
материала характеризует его способность сопротивляться усталостному разрушению. Это свойство оценивается числом циклов повторно-переменных напряжений до возникновения макротрешины или полного разрушения. Последнее происходит вследствие усталости материалов, характеризующей изменение физико-мехаиичееких свойств под действием длительных циклических нагружений, которые порождают необратимые накапливающиеся деформации в наиболее напряженных звеньях конструкций. Выносливость материалов важно учитывать при проектировании
конструкций инженерных сооружений и промышленных зданий, в период эксплуатации которых постоянно действуют циклически изменяющиеся во времени нагрузки.

Геологические изыскания под частный дом
Стоимость геологических изысканий
Как происходит работа: Договор > Бурение > Технический отчет
Содержание технического отчета
Сделать  заказ на геологические изыскания

Источник