Какое свойство является специфическим для электромагнитных волн
Тестирование онлайн
Электромагнитное поле
В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.
Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.
Свойства электромагнитных волн
Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.
Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.
Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.
Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.
В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:
Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).
Электромагнитная волна переносит энергию.
Диапазон электромагнитных волн
Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.
Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.
Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.
К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.
Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.
Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.
Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.
Принцип радиосвязи
Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром — антенной.
Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.
Радар (радиолокатор)
Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.
Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.
Длина волны прямо связана с частотой через (групповую) скорость распространения излучения.Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.
Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика,
хотя свойствами излучения отдельных областей спектра занимаются
определенные более специализированные разделы физики (отчасти так
сложилось исторически, отчасти обусловлено существенной конкретной
спецификой, особенно в отношении взаимодействия излучения разных
диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий; в соответствии с современными представлениями (Стандартная модель)
при высоких энергиях электродинамика перестает быть самостоятельной,
объединяясь в одной теории со слабыми взаимодействиями, а затем — при
еще более высоких энергиях — как ожидается — со всеми остальными
калибровочными полями.
Существуют различающиеся в деталях и степени общности теории,
позволяющие смоделировать и исследовать свойства и проявления
электромагнитного излучения. Наиболее фундаментальной из завершенных и проверенных теорий такого рода является квантовая электродинамика,
из которой путём тех или иных упрощений можно в принципе получить все
перечисленные ниже теории, имеющие широкое применение в своих областях.
Для описания относительно низкочастотного электромагнитного излучения в
макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла,
причём существуют упрощения в прикладных применениях. Для оптического
излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа,
для которых электромагнитное излучение (чаще всего — определенного
диапазона) и его взаимодействие с веществом играют ключевую роль. Все
эти области граничат и даже пересекаются с описанными выше разделами
физики.
Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:
- наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
- электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно
направлению распространения волны, но они существенно отличаются от
волн на воде и от звука тем, что их можно передать от источника к
приёмнику в том числе и через вакуум.
Вариант 1.
1.Каким должен быть угол падения светового луча, чтобы отраженный луч составлял с падающим угол 500?
1) 200 2) 500 3) 250
2. При переходе луча света из первой среды во вторую угол падения равен 600, а угол преломления 300. Каков относительный показатель преломления второй среды по отношению к первой?
1) 2 2) 3) 0,5
3. Считается, что при распространении света в вакууме в виде электромагнитной волны в пространстве распространяются:
1) только колебания напряженности электрического поля;
2) только колебания индукции магнитного поля;
3) колебания напряженности электрического поля и индукции магнитного поля;
4) колебания невидимой среды – эфира.
4. Расположите в порядке возрастания длины волны электромагнитные излучения разной природы:
инфракрасное излучение Солнца;
рентгеновское излучение;
излучение СВЧ – печей;
ультрафиолетовое излучение.
1) I, II, III, IV 2) II, I, IV, III 3) III, II, I, IV 4) II, IV, I, III
5. Свет распространяется из воздуха в стекло, преломляясь на границе раздела этих сред. На каком рисунке правильно представлены падающий и преломленный лучи?
2) 3) 4)
6. Какое из перечисленных ниже свойств является специфическим для электромагнитных волн, не являясь общим свойством волн любой природы?
1) интерференция;
2) дифракция;
3) преломление;
4) поляризация.
7. Дифракционная решетка с периодом d освещается нормально падающим световым пучком с длиной волны λ. Какое из приведенных ниже выражений определяет угол α, под которым наблюдается второй главный максимум?
1) sin α= 2) sin α= 3) cos α= d???? 4) cos α=
8. Тонкая пленка масла на поверхности лужи может выглядеть окрашенной в разные цвета. Окраска пленки объясняется:
1) поляризацией света в пленке;
2) дифракцией света в пленке;
3) дисперсией света в пленке;
4) интерференцией света в пленке.
9. Свет переходит из воздуха в стекло с показателем преломления n. Какое из следующих утверждений справедливо?
1) частота и скорость света уменьшились в n раз;
2) частота и скорость света увеличились в n раз;
3) частота не изменилась, а скорость света уменьшилась в n раз;
4)частота не изменилась, а скорость света увеличилась в n раз.
Вариант 2.
1. Как изменится угол между падающим и отраженным лучами света, если угол падения уменьшится на 100?
1) уменьшится на 50;
2) уменьшится на 200;
3) увеличится на 100.
2. При переходе луча света из первой среды во вторую угол падения равен 300, а угол преломления 600. Каков относительный показатель преломления второй среды по отношению к первой?
1) 2 2) 3)
3. Скорость света в стекле с показателем преломления n=1,5 примерно равна
1) 200000 м/с 2) 200000 км/с 3) 300000 км/с 4) 450000 км/с
4. В некотором спектральном диапазоне угол преломления лучей на границе воздух – стекло падает с увеличением частоты излучения. Ход лучей для трех основных цветов при падении белого света из воздуха на границу раздела показан на рисунке. Цифрам соответствуют цвета
3
2 1
1 –красный 2) 1 – синий 3) 1 – красный 4) 1 – синий
2 – зеленый 2 – красный 2 – синий 2 – зеленый
3 – синий 3 – зеленый 3 – зеленый 3 – красный
5. Ученик выполнил задание: «Нарисовать ход луча света, падающего из воздуха перпендикулярно поверхности стеклянной призмы треугольного сечения» (см. рисунок). При построении он:
1) ошибся при изображении хода луча только при переходе из воздуха в стекло;
2) правильно изобразил ход луча на обеих границах раздела сред;
3) ошибся при изображении хода луча на обеих границах раздела сред;
4) ошибся при изображении хода луча только при переходе из стекла в воздух.
6. Если за непрозрачным диском, освещенным ярким источником света небольшого размера, поставить фотопленку, исключив попадание на нее отраженных от стен комнаты лучей, то при проявлении ее после большой выдержки в центре тени можно обнаружить светлое пятно. Какое физическое явление при этом наблюдается?
1) дифракция;
2) преломление;
3) дисперсия;
4) поляризация.
7. Дифракционная решетка с периодом d освещается нормально падающим световым пучком с длиной волны λ. Какое из приведенных ниже выражений определяет угол α, под которым наблюдается первый главный максимум?
1) sin α= 2) sin α= 3) cos α=
8. Поляризация света доказывает, что свет – это:
1) поток заряженных частиц;
2) поток электронейтральных частиц;
3) поперечная волна;
4) продольная волна.
9. Свет переходит из воздуха в стекло с показателем преломления n. Какое из следующих утверждений справедливо?
1) длина световой волны и скорость света уменьшились в n раз;
2) длина световой волны и скорость света увеличились в n раз;
3) длина световой волны не изменилась, а скорость света уменьшилась в n раз;
4) длина световой волны не изменилась, а скорость света увеличилась в n раз.
Свойства электромагнитных волн
Подробности
Просмотров: 465
«Физика — 11 класс»
Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн.
При этом лучше всего пользоваться волнами сантиметрового диапазона.
Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ).
Электрические колебания генератора модулируют звуковой частотой.
Принятый сигнал после детектирования подается на громкоговоритель.
Электромагнитные волны излучаются рупорной антенной в направлении оси рупора.
Приемная антенна в виде такого же рупора улавливает волны, которые распространяются вдоль его оси.
Поглощение электромагнитных волн
Располагают рупоры друг против друга и, добившись хорошей слышимости звука в громкоговорителе, помещают между рупорами различные диэлектрические тела.
При этом замечают уменьшение громкости.
Отражение электромагнитных волн
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым.
Волны не достигают приемника вследствие отражения.
Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн.
Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу.
Звук исчезнет, если убрать лист или повернуть его-
Преломление электромагнитных волн
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика.
Это можно обнаружить с помощью большой треугольной призмы из парафина.
Рупоры располагают под углом друг к другу, как и при демонстрации отражения.
Металлический лист заменяют затем призмой.
Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Поперечность электромагнитных волн
Электромагнитные волны являются поперечными.
Это означает, что векторы и электромагнитного поля волны перпендикулярны направлению ее распространения.
При этом векторы и взаимно перепендикулярны.
Волны с определенным направлением колебаний этих векторов называются поляризованными.
.
Приемный рупор с детектором принимает только поляризованную в определенном направлении волну.
Это можно обнаружить, повернув передающий или приемный рупор на 90°.
Звук при этом исчезает.
Поляризацию наблюдают, помещая между генератором и приемником решетку из параллельных металлических стержней.
Решетку располагают так, чтобы стержни были горизонтальными или вертикальными.
При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка отражает волны, подобно сплошной металлической пластине.
Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.
Итак,
электромагнитные волны обладают следующими свойствами.
Они поглощаются, отражаются, испытывают преломление, поляризуются.
Последнее свойство свидетельствует о поперечности этих волн.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Электромагнитные волны. Физика, учебник для 11 класса — Класс!ная физика
Что такое электромагнитная волна —
Экспериментальное обнаружение электромагнитных волн —
Плотность потока электромагнитного излучения —
Изобретение радио А. С. Поповым. Принципы радиосвязи —
Модуляция и детектирование —
Свойства электромагнитных волн —
Распространение радиоволн —
Радиолокация —
Понятие о телевидении. Развитие средств связи —
Краткие итоги главы
Электромагнитные волны представляют собой переменные электромагнитные поля, состоящие из двух неразрывно связанных и взаимно обусловленных составляющих — переменного электрического и магнитного полей. Возбуждение в некоторой области пространства переменного электрического поля приводит к возникновению в смежных областях пространства переменного магнитного поля, которое в свою очередь возбуждает переменное электрическое поле и т. д. Непременным условием существования электромагнитных волн является их распространение, которое в вакууме происходит со скоростью света, а в других средах — со скоростью, определяемой электрическими свойствами этих сред.
Свойства электромагнитных волн
Одной из важнейших характеристик электромагнитных волн, определяющих их специфические особенности, является частота электромагнитных колебаний и связанная с ней длина волны. Электромагнитные волны охватывают широкий спектр колебаний различных частот.
Широкую область электромагнитных колебаний занимают радиоволны. К радиоволнам относят колебания с частотами от 10 МГц до ~300 ГГц, что соответствует длинам волн от 30 км до 1 мм.
Радиоволны возбуждаются при помощи электрических цепей, питаемых переменными токами соответствующей частоты. Применительно к особенностям их распространения в земных условиях радиоволны различают по следующим диапазонам (табл. 1).
Таблица 1
Название диапазона | Длина волны, м | Частота, МГц |
Сверхдлинные волны (СДВ) | 100 000-10000 | 0.003 — 0.03 |
Длинные волны (ДВ) | 10 000-1000 | 0.03 — 0.3 |
Средние волны (СВ) | 1000-100 | 0.3 — 3 |
Короткие волны (КВ) | 100-10 | 3 — 30 |
Ультракороткие волны (УКВ): | ||
метровые | 10-1 | 30 — 300 |
дециметровые | 1 — 0.1 | 300 — 3000 |
сантиметровые | 0.1-0,01 | 3000 — 30000 |
миллиметровые | 0,01-0,001 | 30000-300000 |
К радиоволнам примыкают волны инфракрасного излучения с длиной волны до 0,77 мкм (частота до 4×105 ГГц). Источниками этих волн служат слабонагретые тела, а также оптические квантовые генераторы. Инфракрасные лучи обнаруживаются по их тепловому действию.
За инфракрасным излучением следует видимое световое, которому соответствуют длины волн от 0,77 до 0,38 мкм (частота до 8×105 ГГц). Источниками световых волн являются атомы и молекулы различных тел, излучающие эти волны под влиянием некоторых внешних воздействий (например, нагретые тела или газы, светящиеся под влиянием электрических разрядов). Мощным источником электромагнитных колебаний светового диапазона являются оптические квантовые генераторы (лазеры). Световое излучение обнаруживается глазом, а также по фотографическому, фотоэлектрическому и тепловому действиям.
Следующий диапазон электромагнитных колебаний занимают ультрафиолетовые лучи, длины волн которых лежат в пределах от 0,38 до 0,05 мкм (частота до 6×106 ГГц). Источниками их являются возбужденные атомы различных тел, испускающие лучи под влиянием некоторых внешних воздействий. Эти лучи обнаруживаются фотоэлектрическим и фотографическим методами.
За ультрафиолетовыми лучами лежит область рентгеновских и еще более коротких — гамма-лучей, испускаемых атомами и отдельными элементарными частицами вещества (электронами, протонами и др.) под влиянием различных воздействий. Все короткие волны, начиная со световых, способны ионизировать газы; этим их свойством пользуются для обнаружения наиболее коротких электромагнитных волн.
Законы распространения электромагнитной энергии тесно связаны с электрическими и магнитными свойствами среды, которые характеризуются диэлектрической проницаемостью ε, измеряемой в фарадах на метр (Ф/м), магнитной проницаемостью µ, измеряемой в генри на метр (Г/м), и удельной электрической проводимостью σ, измеряемой в сименсах на метр (См/м). Однородную среду, в которой электромагнитные волны не испытывают поглощения, отражения и рассеяния, называют свободным пространством или вакуумом. Реально такого пространства не существует, но свойства космического пространства близки к нему. Для свободного пространства σ = 0, так как в нем нет свободных электрических зарядов, обусловливающих электропроводность.
Одной из важнейших характеристик электромагнитных волн является скорость их распространения, которая в свободном пространстве одинакова для всех длин волн и является одной из фундаментальных постоянных физики. В реальной среде скорость распространения электромагнитных волн зависит как от свойств среды, так и от частоты электромагнитных колебаний. Если электромагнитные параметры среды зависят от частоты колебаний, то волны различных частот будут распространяться в такой среде с различной скоростью. Это явление называют дисперсией, а среды, обладающие дисперсией, получили название диспергирующих. Свободное пространство, как указывалось выше, является недиспергирующей средой. Атмосфера в нижней ее части (ниже ионосферы) для радиоволн представляет собой недиспергирующую среду и поэтому скорость их распространения в атмосфере не зависит от частоты. Для световых волн нижние слои атмосферы являются диспергирующей средой.
При взаимном перемещении источника электромагнитных колебаний и приемника энергии возникает эффект Доплера, заключающийся в изменении частоты принимаемых колебаний. При удалении источника колебаний частота уменьшается, а при приближении — возрастает. Эффект Доплера имеет важное значение в астрономии и применяется при определении положения искусственных космических объектов.
Распространение электромагнитных волн
Если бы Земля была идеальным проводником и ее поверхность представляла собой плоскость, а атмосфера, в которой распространяются электромагнитные волны, была идеальным диэлектриком, то распространение электромагнитных волн происходило бы без поглощения и потери энергии, так как идеальный проводник полностью отражает волну, а в идеальном диэлектрике отсутствует поглощение. В подобном случае волны распространялись бы прямолинейно и с постоянной скоростью; уменьшение напряженности поля происходило бы только за счет расширения сферического фронта волны.
В действительных условиях, а именно вблизи границы раздела двух различных неоднородных сред (атмосферы и Земли), распространение электромагнитных волн существенно отличается от указанного выше идеального случая. Неоднородность обеих сред по отношению к электромагнитным колебаниям состоит в различии и постоянной изменчивости в пространстве и во времени их электрических параметров: диэлектрической проницаемости и электрической проводимости. Магнитная проницаемость для сред, встречающихся при распространении электромагнитных воли в земных условиях, близка к единице и поэтому она почти не влияет на распространение волн.
Поверхность Земли имеет сложную форму и отличается чрезвычайным разнообразием физических свойств. Водные пространства, а также участки суши с различным рельефом и разнообразным растительным покровом, населенные пункты и искусственные сооружения характеризуются различными электрическими параметрами, по-разному влияющими на распространение электромагнитных волн. Электрические параметры почвы, кроме того, непостоянны по глубине, причем по мере приближения к уровню грунтовых вод электрическая проводимость почвы повышается. Однако на распространение радиоволн существенно влияет только сравнительно тонкий поверхностный слой почвы.
Электрические параметры в общем случае зависят как от свойств среды, так и от длины волны взаимодействующих со средой электромагнитных колебаний. Так, для длинных волн почвы по электрическим параметрам приближаются к идеальному проводнику. Поэтому длинные волны отражаются от земли без заметного поглощения. При уменьшении длины волны проводимость почвы уменьшается и почва по свойствам приближается к диэлектрику. Вследствие этого короткие волны, распространяющиеся вблизи поверхности земли, заметно поглощаются уже на расстоянии нескольких десятков километров. Поглощение волн сильнее над влажной почвой и в особенности над морем. Однако поглощение становится существенным лишь при распространении радиоволн вблизи поверхности земли, на расстоянии порядка длины волны. При прохождении на больших расстояниях от поверхности радиоволны практически не испытывают поглощения почвой.
Электромагнитные колебания светового диапазона с помощью оптических систем светодальномеров излучаются узким направленным пучком. Непосредственное влияние Земли в этом случае не имеет места, так как световой пучок проходит на значительном (по сравнению с длиной волны) расстоянии от поверхности; происходит лишь искривление пути световой волны за счет изменения показателя преломления атмосферы.
Распространение радиоволн в зависимости от вида и ширины диаграммы направленности излучающей антенны захватывает значительное пространство. Однако при этом существенную роль играет лишь некоторая ограниченная область, внутри которой распространяются волны, наиболее эффективно действующие на приемное устройство.
Различия распространения электромагнитных волн
Изложенное свидетельствует о многообразии и сложности факторов. определяющих распространение радио- и световых волн в земных условиях. Ниже приведены характерные особенности распространения электромагнитных волн различных диапазонов.
Длинные волны при распространении вдоль поверхности Земли вследствие дифракции частично огибают земной шар и сравнительно слабо поглощаются. Поэтому поверхностная волна распространяется далеко за пределы прямой видимости (до 3000 км и более). Отражаясь от относительно устойчивых слоев ионосферы, длинные волны характеризуются постоянством условий распространения пространственной волны. Под действием флуктуаций в ионосфере напряженность поля пространственной волны меняется сравнительно слабо. Недостатком этого диапазона воли является высокий уровень атмосферных помех.
Распространение средних волн сопровождается резкими суточными колебаниями напряженности поля вместе приема. Днем преобладает поверхностная волна, которая частично огибает земной шар; однако вследствие значительного поглощения ее полупроводящей поверхностью Земли распространение поверхностной волны происходит не далее 1000 км. В ночное время усиливается пространственная волна, фаза колебаний в которой вследствие флуктуаций электронной концентрации в ионосфере непрерывно изменяется. Это вызывает изменение разности фаз накладывающихся поверхностной и пространственной волн, что приводит к колебаниям амплитуды результирующего поля, к ослаблениям и полному исчезновению приема, называемому замиранием.
Короткие волны распространяются на дальние расстояния главным образом пространственной волной, отраженной от ионосферы. Поле этой волны из-за изменений в ионосфере неустойчиво; возможно и замирание сигналов. Поверхностная волна вследствие значительного поглощения землей быстро затухает. Для этого диапазона характерно появление зоны молчания на некотором расстоянии от передатчика, в которой уверенный прием невозможен. Появление зоны молчания объясняется быстрым затуханием поверхностной волны и невозможностью, по условиям отражения, попадания в нее пространственной волны.
Ультракороткие волны распространяются почти прямолинейно, незначительно огибая выпуклость Земли за счет атмосферной рефракции и в меньшей степени (только метровые волны) за счет дифракции. Заметное отражение от ионосферы происходит только на метровых волнах (длиннее 4-5 м). Более короткие волны не могут попадать на землю пространственной волной и дальность их распространения определяется поверхностной волной, которая сравнительно быстро затухает за счет поглощения землей и атмосферой (в особенности для сантиметровых и миллиметровых волн). Атмосферные помехи в этом диапазоне незначительны.
Инфракрасные и световые волны распространяются почти прямолинейно. Их путь искривляется только за счет атмосферной рефракции. При распространении эти волны испытывают сильное поглощение и рассеяние в атмосфере, в особенности, если последняя насыщена жидкими и газообразными частицами воды и пылью. При помощи оптических систем световые и инфракрасные волны можно сконцентрировать в узкий луч большой мощности, в особенности когда источником излучения является лазер. Подстилающая поверхность не оказывает влияния на распространение этих волн. Наличие фона за счет рассеянного света атмосферы требует повышенной мощности источников света и соответствующей оптики, в противном случае применение световых волн в светлое время суток ограниченно. Наибольшая точность измерения направлений и расстояний при геодезических работах в настоящее время обеспечивается именно в диапазоне световых волн.