Какое свойство характерно для сахарозы
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 апреля 2019;
проверки требуют 8 правок.
Эта статья — о химическом веществе. О пищевом продукте см. Сахар.
Сахароза | |
---|---|
Систематическое наименование | (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-дигидрокси-2,5-бис(гидроксиметил)оксолан-2-ил]окси-6-(гидроксиметил)оксан-3,4,5-триол |
Сокращения | α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид |
Традиционные названия | свекловичный сахар, тростниковый сахар |
Хим. формула | C12H22O11 |
Состояние | Твёрдое, кристаллическое |
Молярная масса | 342,2965 ± 0,0144 г/моль |
Плотность | 1,587 г/см³ |
Температура | |
• плавления | 186 °C |
• разложения | 367 ± 1 °F[1] и 320 ± 1 °F[1] |
Давление пара | 0 ± 1 мм рт.ст.[1] |
Растворимость | |
• в воде | 211,5 г/100 мл |
Рег. номер CAS | 57-50-1 |
PubChem | 5988 |
Рег. номер EINECS | 200-334-9 |
SMILES | OC1C(OC(CO)C(O)C1O) |
InChI | 1S/C12H22O11/c13-1-4-6(16)8(18)9(19)11(21-4)23-12(3-15)10(20)7(17)5(2-14)22-12/h4-11,13-20H,1-3H2/t4-,5-,6-,7-,8+,9-,10+,11-,12+/m1/s1 CZMRCDWAGMRECN-UGDNZRGBSA-N |
RTECS | WN6500000 |
ChEBI | 17992 |
ChemSpider | 5768 |
NFPA 704 | 1 |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Сахаро́за (сукро́за, тростниковый сахар) C12H22O11, в быту просто сахар, — дисахарид из группы олигосахаридов, состоящий из двух моносахаридов: α-глюкозы и β-фруктозы.
Сахароза является весьма распространённым в природе дисахаридом. Она встречается во многих фруктах, плодах и ягодах. Особенно велико содержание сахарозы в сахарной свёкле и сахарном тростнике, которые и используются для промышленного производства пищевого сахара.
Сахароза, попадая в кишечник, быстро гидролизуется альфа-глюкозидазой тонкой кишки на глюкозу и фруктозу, которые затем всасываются в кровь. Ингибиторы альфа-глюкозидазы, такие, как акарбоза, тормозят расщепление и всасывание сахарозы, а также и других углеводов, гидролизуемых альфа-глюкозидазой, в частности, крахмала. Это используется в лечении сахарного диабета 2-го типа[2].
Физические свойства[править | править код]
В чистом виде — бесцветные моноклинные кристаллы. При застывании расплавленной сахарозы образуется аморфная прозрачная масса — карамель. Сахароза имеет высокую растворимость. Растворимость (в граммах на 100 грамм растворителя): в воде 179 (0 °C) и 487 (100 °C), в этаноле 0,9 (20 °C). Малорастворима в метаноле. Не растворима в диэтиловом эфире. Плотность 1,5879 г/см3 (15 °C). Удельное вращение для D-линии натрия: 66,53 (вода; 35 г/100г; 20 °C). Температура плавления 186℃.
Химические свойства[править | править код]
Не проявляет восстанавливающих свойств — не реагирует с реактивами Толленса, Фелинга и Бенедикта. Не образует открытую форму, поэтому не проявляет свойств альдегидов и кетонов. Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов. Если раствор сахарозы прилить к гидроксиду меди(II), образуется ярко-синий раствор сахарата меди. Альдегидной группы в сахарозе нет: при нагревании с аммиачным раствором оксида серебра(I) она не дает реакцию «серебряного зеркала», при нагревании с гидроксидом меди(II) не образует красного оксида меди(I). Из числа изомеров сахарозы, имеющих молекулярную формулу С12Н22О11, можно выделить мальтозу и лактозу.
Реакция сахарозы с водой[править | править код]
Если прокипятить раствор сахарозы с несколькими каплями соляной или серной кислоты и нейтрализовать кислоту щелочью, а после этого нагреть раствор, то появляются молекулы с альдегидными группами, которые и восстанавливают гидроксид меди(II) до оксида меди(I). Эта реакция показывает, что сахароза при каталитическом действии кислоты подвергается гидролизу, в результате чего образуются глюкоза и фруктоза:
Реакция сахарозы с гидроксидом меди(II)[править | править код]
Поскольку связь между остатками моносахаридов в сахарозе образована засчет обоих гликозидных гидроксилов, это вещество не обладает восстановительными свойствами. При добавлении раствора сахарозы к осадку гидроксида меди (II) он растворяется; жидкость окрашивается в синий цвет. Но, в отличие от глюкозы, сахароза не восстанавливает гидроксид меди (II) до оксида меди (I).
Природные и антропогенные источники[править | править код]
Содержится в сахарном тростнике, сахарной свёкле (до 28 % сухого вещества), соках растений и плодах (например, берёзы, клёна, дыни и моркови).
Источник получения сахарозы — из свёклы или из тростника, определяют по соотношению содержания стабильных изотопов углерода 12C и 13C. Сахарная свёкла имеет C3-механизм усвоения углекислого газа (через фосфоглицериновую кислоту) и предпочтительно поглощает изотоп 12C; сахарный тростник имеет C4-механизм поглощения углекислого газа (через щавелевоуксусную кислоту) и предпочтительно поглощает изотоп 13C.
Мировое производство в 1990 году — 110 000 000 тонн.
Галерея[править | править код]
Статичное 3D-изображение
молекулы сахарозыКристаллы коричневого
(нерафинированного тростникового) сахара
Примечания[править | править код]
Примером наиболее распространенных в природе дисахаридов (олигосахаридом) является сахароза (свекловичный или тростниковый сахар).
Биологическая роль сахарозы
Наибольшее значение в питании человека имеет сахароза, которая в значительном количестве поступает в организм с пищей. Подобно глюкозе и фруктозе сахароза после расщепления ее в кишечнике быстро всасывается из желудочно-кишечного тракта в кровь и легко используется как источник энергии.
Важнейший пищевой источник сахарозы — сахар.
Строение сахарозы
Молекулярная формула сахарозы С12Н22О11.
Сахароза имеет более сложное строение, чем глюкоза. Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы в их циклической форме. Они соединены друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2) -гликозидной связью, то есть свободный полуацетальный (гликозидный) гидроксил отсутствует:
Сахароза. Строение
Физические свойства сахарозы и нахождение в природе
Сахароза (обыкновенный сахар) – белое кристаллическое вещество, более сладкое, чем глюкоза, хорошо растворимое в воде.
Температура плавления сахарозы 160°C. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.
Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно много ее содержится в сахарной свёкле (16-21%) и сахарном тростнике (до 20%), которые и используются для промышленного производства пищевого сахара.
Содержание сахарозы в сахаре 99,5%. Сахар часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли.
Химические свойства
Для сахарозы характерны реакции по гидроксильным группам.
1. Качественная реакция с гидроксидом меди (II)
Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов.
Видеоопыт «Доказательство наличия гидроксильных групп в сахарозе»
Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди (качественная реакция многоатомных спиртов):
2. Реакция окисления
Восстанавливающие дисахариды
Дисахариды, в молекулах которых сохраняется полуацетальный (гликозидный) гидроксил (мальтоза, лактозы), в растворах частично превращаются из циклических форм в открытые альдегидные формы и вступают в реакции, характерные для альдегидов: реагируют с аммиачным раствором оксида серебра и восстанавливают гидроксид меди (II) до оксида меди (I). Такие дисахариды называются восстанавливающими (восстанавливают Cu (OH)2 и Ag2O).
Реакция «серебряного зеркала»
Реакция с гидроксидом меди (II)
Невосстанавливающий дисахарид
Дисахариды, в молекулах которых нет полуацетального (гликозидного) гидроксила (сахароза) и которые не могут переходить в открытые карбонильные формы, называются невосстанавливающими (не восстанавливают Cu (OH)2 и Ag2O).
Сахароза, в отличие от глюкозы, не является альдегидом. Сахароза, находясь в растворе, не вступает в реакцию «серебряного зеркала» и при нагревании с гидроксидом меди (II) не образует красного оксида меди (I), так как не способна превращаться в открытую форму, содержащую альдегидную группу.
Видеоопыт «Отсутствие восстанавливающей способности сахарозы»
3. Реакция гидролиза
Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды.
Сахароза способна подвергаться гидролизу (при нагревании в присутствии ионов водорода). При этом из одной молекулы сахарозы образуется молекула глюкозы и молекула фруктозы:
Видеоопыт «Кислотный гидролиз сахарозы»
Мальтоза и лактоза при гидролизе расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):
Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.
В живых организмах гидролиз дисахаридов происходит при участии ферментов.
Получение сахарозы
Сахарную свеклу или сахарный тростник превращают в тонкую стружку и помещают в диффузоры (огромные котлы), в которых горячая вода вымывает сахарозу (сахар).
Вместе с сахарозой в водный раствор переходят и другие компоненты (различные органические кислоты, белки, красящие вещества и др.). чтобы отделить эти продукты от сахарозы, раствор обрабатывают известковым молоком (гидроксидом кальция). В результате этого образуются малорастворимые соли, которые выпадают в осадок. Сахароза образует с гидроксидом кальция растворимый сахарат кальция С12Н22О11·CaO·2Н2О.
Для разложения сахарата кальция и нейтрализации избытка гидроксида кальция через раствор пропускают оксид углерода ( IV).
Выпавший в осадок карбонат кальция отфильтровывают, а раствор упаривают в вакуумных аппаратах. По мере образования кристалликов сахара отделяют с помощью центрифуги. Оставшийся раствор – меласса – содержит до 50% сахарозы. Его используют для производства лимонной кислоты.
Выделенную сахарозу очищают и обесцвечивают. Для этого ее растворяют в воде и полученный раствор фильтруют через активированный уголь. Затем раствор снова упаривают и кристаллизуют.
Применение сахарозы
Сахароза в основном используется как самостоятельный продукт питания (сахар), а также при изготовлении кондитерских изделий, алкогольных напитков, соусов. Ее используют в высоких концентрациях в качестве консерванта. Путем гидролиза из нее получают искусственный мёд.
Сахароза находит применение в химической промышленности. С помощью ферментации из нее получают этанол, бутанол, глицерин, левулиновую и лимонную кислоты, декстран.
В медицине сахарозу используют при изготовлении порошков, микстур, сиропов, в том числе для новорожденных детей (для придания сладкого вкуса или консервации).
Углеводы
Олигосахариды. Дисахариды
Сахароза — органическое вещество с кристаллической решеткой. Другое название — сахар. Это дисахарид, образованный остатками двух моносахаридов — фруктозы и глюкозы.
Узнаем больше о сахарозе, ее строении, формуле, физических и химических свойствах и о том, какую пользу играет она для живых организмов.
Формула и строение сахарозы
Структурная формула — C12H22O11, хотя она происходит от соединения двух простых сахаров, таких как глюкоза и фруктоза.
Два кольца этих сахаров объединены отдельным атомом кислорода, соединенным с двумя атомами углерода в цепочке. Другое расширение атома в молекуле также присутствует, главным образом, в комбинациях кислорода и водорода.
Связь между моносахаридами имеет O-глюкозидный тип. Кроме того, эта связь является дикарбонильной.
Физические свойства
По своим физическим свойствам она обладает сладким вкусом, может кристаллизоваться и растворима в воде.
Когда сахароза достигает желудка, она подвергается кислотному гидролизу и разлагается на части: на глюкозу и фруктозу. Остальная часть сахарозы переходит в тонкий кишечник, где ферментная сахароза преобразует ее в глюкозу и фруктозу.
Подчеркиваются ее специфические свойства в качестве питательного вещества для организма человека: она легко усваивается и не выделяет токсичных веществ. Это означает, что сахароза обладает как свойствами глюкозы, так и свойствами фруктозы, что означает, что она является источником энергии для организма.
Существует множество противоречий по поводу вреда, наносимого потреблением сахарозы, и несколько теорий по этому поводу. Основные дебаты сосредоточены на развитии кариеса, диабета, ожирения, атеросклероза и других патологий.
Интересно, что сахароза является триболюминесцентной, производящей свет механическим действием.
Благодаря низкой температуре плавления 1860С она очень быстро становится жидкой, очень легко прилипает к контейнеру, в котором она находится, может запросто обжечь кожу, если не соблюдать меры безопасности. Температура кипения раствора равна 101,40С.
Основные свойства описаны в таблице:
Физические свойства сахарозы | |
Молярная масса | 342,3 г/моль |
Температура плавления | 1860С |
Растворимость | 211,5 г / 100 мл |
Плотность | 1,587 г/см3 |
Химические свойства
В молекуле сахарозы есть гидроксильные группы. Рассмотрим основные уравнения химических реакций сахарозы.
Реакция гидролиза
Сахароза способна подвергаться гидролизу, во время которого она распадается на моносахариды (глюкозу и фруктозу):
C12H22O11
+ H2O → C6H12O6
+ C6H12O6.
Реакции окисления
Дисахариды, которые сохраняют полуацетальный гидроксил, называются восстанавливающими. Дисахариды без полуацетального гидроксила называются невосстанавлиающими. Сахароза не является альдегидом.
Пример каталитического окисления сахарозы кислородом воздуха:
C12H22O11
+ 12 O2 → 12 CO2 + 11 H2O.
Качественная реакция с гидроксидом меди
Как провести лабораторный опыт:
лабораторное оборудование: пробирка, горелка;
реагенты: водный раствор сахарозы, гидроксид меди (II);
действия: залейте раствор сахарозы в пробирку, добавьте гидроксид меди (II), разогрейте пробирку над горелкой:
C12H22O11
+ 2 Cu (OH)2 → ярко-синее окрашивание;
Замечания: синий осадок не изменил цвет, несмотря на подачу энергии в виде тепла;
Вывод: сахароза не обладает восстановительными свойствами.
Нахождение сахарозы в природе
Она обычно извлекается из сахарного тростника, свеклы или кукурузы.
Сахарный тростник
Другими коммерческими (незначительными) источниками являются сладкий сорго и кленовый сироп.
Получение сахарозы
Сахароза извлекается из сырья, в котором она содержится, а затем очищается и кристаллизуется.
Применение и биологическая роль сахарозы
Широкое применение сахарозы обусловлено ее способностью к подслащению и свойствами функциональной консистенции. По этой причине она важна для структуры некоторых продуктов питания, особенно кондитерских изделий.
Также является вспомогательным компонентом в сохранении пищи, будучи добавкой, широко используемой в приготовлении так называемой нездоровой пищи.
В проросших семенах растений жиры и белки, находящиеся на хранении, превращаются в сахарозу для транспортировки в процессе развития растений.
Главная функция сахарозы в организме человека — она помогает вырабатывать энергию, необходимую для функционирования различных органов.
Дисахариды – органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов. К дисахаридам относятся: изомальтоза, лактоза, лактулоза, мальтоза, мелибиоза, нигероза, сахароза, рутиноза, треголоза, целлобиоза и пр.
Дисахариды, формула, строение, состав, вещество:
Дисахариды (от др. греч. δύο – «два» и σάκχαρον – «сахар») – органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.
Молекулы дисахаридов состоят из двух остатков моносахаридов, соединённых друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой) – гликозидной связи. Общая формула дисахаридов, как правило, C12H22O11.
Все дисахариды представляют собой бесцветные кристаллы, сладкие на вкус, хорошо растворимы в воде.
К дисахаридам относятся: изомальтоза, лактоза, лактулоза, мальтоза, мелибиоза, нигероза, сахароза (обычный сахар, тростниковый или свекловичный), рутиноза, треголоза, целлобиоза и пр.
Важнейшие наиболее распространенные дисахариды – сахароза (пищевой сахар), мальтоза (солодовый сахар) и лактоза (молочный сахар).
Сахароза состоит из остатков глюкозы и фруктозы.
Ее структурная формула (строение молекулы):
Мальтоза состоит из двух остатков глюкозы.
Ее структурная формула (строение молекулы):
Лактоза состоит из остатков глюкозы и галактозы.
Ее структурная формула (строение молекулы):
Дисахариды широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и других соединений. Многие дисахариды получают из природных источников, так, например, для сахарозы основными источниками служат либо сахарная свёкла, либо сахарный тростник.
Восстанавливающие дисахариды. Невосстанавливающие дисахариды:
По химическим свойствам дисахариды можно разделить на две группы:
- восстанавливающие;
- невосстанавливающие.
Если один полуацетальный гидроксил остается свободным, а дисахариды проявляют альдегидные свойства, то такие дисахариды называются восстанавливающими. Если же связь между двумя остатками моносахаридов осуществляется посредством обоих полуацетальных гидроксилов, то для таких дисахаридов альдегидные свойства не характерны и они называются невосстанавливающими. Восстанавливающие дисахариды часто называют гликозо-гликозидами, а невосстанавливающие – гликозидо-гликозидами.
К первой группе (восстанавливающие дисахариды) относятся: лактоза, мальтоза, целлобиоза. Ко второй (невосстанавливающие дисахариды): сахароза, трегалоза.
Химические свойства дисахаридов:
Основные химические реакции дисахаридов следующие:
1. реакция гидролиза дисахаридов:
При гидролизе дисахариды расщепляются на составляющие их моносахариды за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования дисахаридов из моносахаридов.
Гидролиз протекает в кислой среде и (или) при нагревании.
C12H22O11 + H2O → 2C6H12O6 (to, Н+).
В результате гидролиза α-мальтозы образуются две молекулы глюкозы.
C12H22O11 + H2O → C6H12O6 + C6H12O6 (to, Н+).
В результате гидролиза лактозы образуются глюкоза и галактоза.
C12H22O11 + H2O → C6H12O6 + C6H12O6 (to, Н+).
В результате гидролиза сахарозы образуются глюкоза и фруктоза.
2. восстанавливающие дисахариды – мальтоза, лактоза и целлобиоза – реагируют с аммиачным раствором оксида серебра:
C12H22O11 + Ag2O → C12H22O12 + 2Ag (НH3).
В результате реакции образуется среди прочего чистое серебро.
3. восстанавливающие дисахариды – мальтоза, лактоза и целлобиоза – могут восстанавливать гидроксид меди (II) до оксида меди (I):
C12H22O11 + 2Cu(OH)2 → C12H22O12 + Cu2O + 2H2O.
В результате реакции образуются среди прочего оксида меди (I) и вода.
4. невосстанавливающие дисахариды не реагируют с аммиачным раствором оксида серебра и не восстанавливают гидроксид меди (II) до оксида меди (I), т.к. не содержат полуацетальные гидроксилы.
Функции дисахаридов:
Диисахариды выполняют выполняют следующие функции:
Энергетическая функция. Так, сахароза и мальтоза служат источниками глюкозы для организма человека. Сахароза к тому же – важнейший источник углеводов (она составляет 99,4 % от всех получаемых организмом углеводов). Лактоза используются для диетического детского питания.
Структурная функция. Целлобиоза имеет важное значение для жизни растений, так как она входит в состав целлюлозы.
Ссылка на источник