Какое свойство действий над числами позволяет утверждать
Тема:Свойства действий над числами
Цели урока: вспомнить и повторить свойства действий над числами. В течение урока развивать у учащихся навык записывать свойства при помощи буквенных равенств. знать; уметь
Ход урока:
1. Организационный момент. (2 мин.)
Сложение
a, b — числа, над которыми выполняется сложение, с — результат сложения
3. Новый материал. (12 мин.)
Сложение многозначных чисел производится поразрядно.
Пример: 9067542 + 34981 = 9102523
Законы сложения.
1) переместительный: a + b = b + a;
Пример. 310 + 1454 = 1454 + 310. Каким бы мы способом не складывали результат будет равен 1764.
2) сочетательный: (a + b) + c = a + (b + c);
Пример: (329 + 85) + 120 = 329 + (85 + 120) = 329 + 205 =534;
3) закон сложения числа с нулём: а + 0 = а.
Вычитание
a (уменьшаемое) — b (вычитаемое) = c (разность)
Пример: 42397 — 17963 = 24434
Свойства действий вычитания:
1) закон вычитания из суммы числа:
(a + b) — c = (a — c) + b, если а > c или a = c;
2) закон вычитания из числа суммы:
a — (b + c) = (a — b) — c;
3) закон вычитания из числа числа:
а — а = 0
4) закон вычитания из числа нуля:
а — 0 = а
5) закон вычитания из суммы суммы:
(a + b) — (c + d) = ;
Задача как пример действий сложения и вычитания
Вычислите удобным способом:
1) (4981 — 2992) — 808;
2) (3975 + 5729) — (5729 + 975).
Решение
Применяем 2-й и 5-й законы вычитания:
1) (4981- 2992) — 808 = 4981 — (2992 + 808) = 4981 — 3800 = 1181;
2) (3975 + 5729) — (5729 + 975) = (3975 — 975) + (5729 — 5720)= 3000 + 0 = 3000
Умножение
Умножить число а на число b (b>1)- значит найти сумму b слагаемых (каждое слагаемое равно а).
a x b= а + а + … + а
Если b = 1, то а x 1 = a.
a (первый множитель) x b (второй множитель) = c (произведение)
Например: 57 + 57 + 57 + 34 + 34 = 57 х 3 + 34 х 2 = 171 + 68 + 239
Законы умножения
1) переместительный: a x b = b x a;
Пример. 15 х 110 = 110 х 15.
2) сочетательный: (a x b) x c = a x (b x c);
Пример: (9 х 30) х 10= 9 х (30 х 10) = 9 х 300= 2700;
(65 х 25) х 44 = (25 х 65) х 44 = 25 х (65 X 44)=25 х 2860 = 71500.
3) умножение на ноль:0 x a = 0;
Пример: 0 х 10 = 0.
4) распределительный закон умножения относительно действия сложения (вычитания):
a x (b + c) = a x b + a x c;
Задачи как пример действия умножения
Задача 1. Вычислить удобным способом:
1) (37 х 125) х 8;
2) 49 х 84 + 49 х 83 — 49 х 67.
Решение
1) (37 х 125) х 8 = 37 х (125 х 8) = 37 х 1000 = 37000;
2) 49 х 84 + 49 х 83 — 49 х 67 = 49 х (84 + 83 — 67) = 49 х 100 = 4900.
Задача 2. 1 квт/ч стоит 12 руб. Электрический утюг за 1 ч работы расходует 2 квт/ч. Утюгом два дня гладили бельё: в первый день- 3 ч, во второй- 2ч. Сколько стоит электроэнергия, израсходованная за два дня? Задачу решите сами, а мы дадим только ответы: за 3 ч- 72руб; за 2ч- 48руб.
Деление
а (делимое) : b (делитель) = с (частное)
Законы деления:
1) а : 1 = а, так как а х 1 = а;
2) 0 : а =0, так как 0 х а = 0;
3) на 0 нельзя делить!
2224222 : 2222 = 1001
Закон деления суммы (разности) на число:
1) (а + b) : с = а : с + b : с, с не равно 0;
2) (а — b) : с = а : с -b : с, с не равно 0;
Пример: (4800 + 9300) : 300 = 4800 : 300 + 9300 : 300 = 16 + 31 + 47.
Закон деления произведения на число:
(а х b) :с = (а : с) х b = (b : с) х а, с не равно 0.
Пример: (125 х 27) : 25 = (125 : 25) х 27 = 5 х 27 = 135.
Свойства действий над числами
Переместительное и сочетательное свойство гласит, что в любой сумме можно как угодно переставлять слагаемые и произвольно объединять их в группы (от перемены мест слагаемых сумма не меняется!).
Распределительное свойство справедливо тогда, когда число умножается на сумму трех и более слагаемых.
4. Закрепление нового материала. (18 мин.)
5. Итоги урока. (3 мин.)
6. Домашнее задание. (2 мин.)