Какое общее свойство у квадрата и треугольника

Какое общее свойство у квадрата и треугольника thumbnail

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)

Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников.
Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции.

Виды четырехугольников:

  • Параллелограмм — это четырехугольник у которого противолежащие стороны параллельны
Виды четырехугольников. Параллелограмм - это четырехугольник у которого противолежащие стороны параллельны
  • Ромб — это параллелограмм, у которого все стороны равны.
Виды четырехугольников. Ромб - это параллелограмм, у которго все стороны равны.
  • Прямоугольник — это параллелограмм, у которого все углы прямые.
Виды четырехугольников. Прямоугольник - это параллелограмм у которого все углы прямые.
  • Квадрат — это прямоугольник, у которого все стороны равны.
Виды четырехугольников. Квадрат - это прямоугольник, у которого все стороны равны.
  • Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие — не параллельны.Виды четырехугольников. Трапеция.
Виды четырехугольников. Трапеция - это четырехугольник, у которого две стороны параллельны, а две другие - не параллельны

Свойства произвольных четырехугольников:

  • Сумма внутренних углов четырехугольника равна 360o
    • Свойства произвольных четырехугольников. Сумма внутренних углов четырехугольника равна 360
  • Если соединить отрезками середины соседних сторон — получится параллелограмм:
    • Свойства произвольных четырехугольников. Если соединить отрезками середины соседних сторон - получится параллелограмм:
Свойства произвольных четырехугольников.

Свойства параллелограмма:

  • Противолежащие стороны попарно равны:
    • Свойства параллелограмма
  • Противолежащие углы попарно равны:
    • Свойства параллелограмма
  • Сумма углов прилежащих к любой стороне равна 180о:
    • Свойства параллелограмма
  • Диагонали делятся точкой пересечения пополам:
    • Свойства параллелограмма
  • Сумма квадратов диагоналей равна сумме квадратов всех сторон:
    • Свойства параллелограмма
  • Каждая диагональ делить параллелограмм на два равных треугольника:
    • Свойства параллелограмма
  • Обе диагонали делят параллелограмм на четыре равновеликих треугольника:
    • Свойства параллелограмма
Свойства параллелограмма

Свойства ромба:

  • Диагонали ромба перпендикулярны, и делятся точкой пересечения пополам:
    • Свойства ромба
  • Диагонали ромба являются биссектрисами внутренних углов:
    • Свойства ромба
  • Если соединить отрезками середины соседних сторон любого ромба, получается прямоугольник:
    • Свойства ромба
Свойства ромба

Свойства прямоугольника:

  • Диагонали прямоугольника равны, и делятся точкой пересечения пополам:
    • Свойства Четырехугольников. Свойства прямоугольника.
  • Если соединить отрезками середины соседних сторон любого прямоугольника, то получится ромб:
    • Свойства Четырехугольников. Свойства прямоугольника.
Свойства Четырехугольников. Свойства прямоугольника.

Свойства квадрата:

  • Диагонали квадрата равны, перпендикулярны, и точкой делятся точкой пересечения пополам:
    • Свойства квадрата
Свойства квадрата

Свойства трапеции:

  • Средняя («серединная») линия трапеции параллельна основаниям, равна их полусумме, и делит любой отрезок с концами, лежащими на прямых, содержащих основания, пополам:
    • Свойства трапеции.
  • Сумма углов, прилежащих к боковой стороне трапеции, равна 180о:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции — равновелики:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции — подобны:
    • Свойства трапеции.
  • Любой отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции делится этой точкой в отношении:
    • Свойства трапеции.
Свойства трапеции.

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.

Источник

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех. Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника. В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Многоугольники

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон, по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков — четырехугольником, из пяти — пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку — по часовой стрелке или против нее.

Плоский многоугольник

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

  1. Если вершины являются концами одной стороны, они называются соседними.
  2. Если отрезок соединяет между собой несоседние вершины, то он имеет название диагонали. У треугольника не может быть диагоналей.
  3. Внутренний угол — это угол при одной из вершин, который образован двумя его сторонами, сходящимися в этой точке. Он всегда располагается во внутренней области геометрической фигуры. Если многоугольник невыпуклый, его размер может превосходить 180 градусов.
  4. Внешний угол при определенной вершине — это угол смежный с внутренним при ней же. Иными словами, внешним углом можно считать разность между 180° и величиной внутреннего угла.
  5. Сумма величин всех отрезков носит название периметра.
  6. Если все стороны и все углы равны — он носит название правильного. Правильными могут быть только выпуклые.

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

  1. Многоугольник называется плоским, если ограничивает конечную часть плоскости. Эта геометрическая фигура может быть вписанной в окружность или описанной вокруг окружности.
  2. Выпуклым называется n-угольник, который соответствует одному из условий, приведенных ниже.
  3. Фигура расположена по одну сторону от прямой линии, которая соединяет две соседних вершины.
  4. Эта фигура служит общей частью или пересечением нескольких полуплоскостей.
  5. Диагонали располагаются внутри многоугольника.
  6. Если концы отрезка располагаются в точках, которые принадлежат многоугольнику, весь отрезок принадлежит ему.
  7. Фигура может называться правильной, если у нее все отрезки и все углы равны. Примерами могут служить квадрат, равносторонний треугольник или правильный пятиугольник.
  8. Если n-угольник невыпуклый, все стороны и углы его равны, а вершины совпали с таковыми правильного n-угольника, он называется звездчатым. У таких фигур могут иметься самопересечения. Примерами могут служить пентаграмма или гексаграмма.
  9. Треугольник или четырехугольник называется вписанным в окружность, когда все его вершины располагаются внутри одной окружности. Если же стороны этой фигуры имеют точки соприкосновения с окружностью, это многоугольник описанным около некоторой окружности.

Любой выпуклый n-угольник можно поделить на треугольники. При этом количество треугольников бывает меньше количества сторон на 2.

Выпуклый многоугольник

Виды фигур

Треугольник

Это многоугольник с тремя вершинами и тремя отрезками, соединяющими их. При этом точки соединения отрезков не лежат на одной прямой.

Точки соединения отрезков — это вершины треугольника. Сами отрезки называются сторонами треугольника. Общая сумма внутренних углов каждого треугольника равняется 180°.

По соотношениям между сторонами все треугольники можно подразделять на несколько видов:

  1. Равносторонние — у которых длина всех отрезков одинаковая.
  2. Равнобедренные — треугольники, у которых равны два отрезка из трех.
  3. Разносторонние — если длина всех отрезков разная.

Кроме того, принято различать следующие треугольники:

  1. Остроугольные.
  2. Прямоугольные.
  3. Тупоугольные.

Треугольник

Четырехугольник

Четырехугольником называется плоская фигура, имеющая 4 вершины и 4 отрезка, которые их последовательно соединяют.

  1. Если все углы четырехугольника прямые — эта фигура называется прямоугольником.
  2. Прямоугольник, у которого все стороны имеют одинаковую величину, называется квадратом.
  3. Четырехугольник, все стороны которого равны, называется ромбом.

На одной прямой не может находиться сразу три вершины четырехугольника.

Видео

Дополнительную информацию о многоугольниках вы найдете в этом видео.

Источник

Êâàäðàò — ïðàâèëüíûé ÷åòûð¸õóãîëüíèê. Ó êâàäðàòà âñå óãëû è ñòîðîíû îäèíàêîâû.

Êâàäðàòû ðàçëè÷àþòñÿ ëèøü äëèíîé ñòîðîíû, à âñå 4 óãëà ïðÿìûå è ðàâíû 90°.

Êâàäðàòîì ìîæåò ñòàòü ïàðàëëåëîãðàìì, ðîìá ëèáî ïðÿìîóãîëüíèê, êîãäà ó íèõ îäèíàêîâûå äëèíû äèàãîíàëåé, ñòîðîí è ðàâíûå óãëû.

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.       Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

Ñâîéñòâà êâàäðàòà.

— ó âñåõ 4-õ ñòîðîí êâàäðàòà îäèíàêîâàÿ äëèíà, ò.å. ñòîðîíû êâàäðàòà ðàâíû:

AB = BC = CD = AD

— ïðîòèâîëåæàùèå ñòîðîíû êâàäðàòà ïàðàëëåëüíû:

AB||CD, BC||AD

— êàæäûé óãîë êâàäðàòà ïðÿìîé:

ABC = BCD = CDA = DAB = 90°

— ñóììà óãëîâ êâàäðàòà ðàâíà 360°:

ABC + BCD + CDA + DAB = 360°

— êàæäàÿ äèàãîíàëü êâàäðàòà èìååò òàêóþ æå äëèíó, êàê è äðóãàÿ:

AC = BD

— êàæäàÿ èç äèàãîíàëåé êâàäðàòà äåëèò êâàäðàò íà 2 îäèíàêîâûå ñèììåòðè÷íûå ôèãóðû.

— óãîë ïåðåñå÷åíèÿ äèàãîíàëåé êâàäðàòà ðàâåí 90°, ïåðåñåêàÿ äðóã äðóãà, äèàãîíàëè äåëÿòñÿ íà äâå ðàâíûå ÷àñòè:

AC┴BD;AO = BO = CO = DO = d/2

— òî÷êó ïåðåñå÷åíèÿ äèàãîíàëåé íàçûâàþò öåíòð êâàäðàòà è îíà îêàçûâàåòñÿ öåíòðîì âïèñàííîé è îïèñàííîé îêðóæíîñòåé.

— âñå äèàãîíàëè äåëÿò óãîë êâàäðàòà íà äâå ðàâíûå ÷àñòè, òàêèì îáðàçîì, îíè îêàçûâàþòñÿ áèññåêòðèñàìè óãëîâ êâàäðàòà:

ΔABC = ΔADC = ΔBAD = ΔBCD

ACB = ACD = BDC = BDA = CAB = CAD = DBC = DBA = 45°

— äèàãîíàëè äåëÿò êâàäðàò íà 4 îäèíàêîâûõ òðåóãîëüíèêà, êðîìå òîãî, ïîëó÷åííûå  òðåóãîëüíèêè â îäíî âðåìÿ è ðàâíîáåäðåííûå è ïðÿìîóãîëüíûå:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Äèàãîíàëü êâàäðàòà.

Äèàãîíàëüþ êâàäðàòà ÿâëÿåòñÿ âñÿêèé îòðåçîê, êîòîðûé ñîåäèíÿåò 2-å âåðøèíû ïðîòèâîëåæàùèõ óãëîâ êâàäðàòà.

Äèàãîíàëü âñÿêîãî êâàäðàòà áîëüøå ñòîðîíû ýòîãî êâàäðàòà â √2 ðàç.

Ôîðìóëû äëÿ îïðåäåëåíèÿ äëèíû äèàãîíàëè êâàäðàòà:

1. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ñòîðîíó êâàäðàòà:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

2. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ïëîùàäü êâàäðàòà:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

3. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ïåðèìåòð êâàäðàòà:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

4. Ñóììà óãëîâ êâàäðàòà = 360°:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

5. Äèàãîíàëè êâàäðàòà îäíîé äëèíû:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

6. Âñå äèàãîíàëè êâàäðàòà äåëÿò êâàäðàò íà 2-å îäèíàêîâûå ôèãóðû, êîòîðûå ñèììåòðè÷íû:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

7. Óãîë ïåðåñå÷åíèÿ äèàãîíàëåé êâàäðàòà ðàâåí 90°, ïåðåñåêàÿ äðóã äðóãà, äèàãîíàëè äåëÿòñÿ íà äâå ðàâíûå ÷àñòè:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

8. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç äëèíó îòðåçêà l:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

9. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ðàäèóñ âïèñàííîé îêðóæíîñòè:                                      

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

R — ðàäèóñ âïèñàííîé îêðóæíîñòè;

D — äèàìåòð âïèñàííîé îêðóæíîñòè;

d — äèàãîíàëü êâàäðàòà.

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

10. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ðàäèóñ îïèñàííîé îêðóæíîñòè:                                    

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

R – ðàäèóñ îïèñàííîé îêðóæíîñòè;

D – äèàìåòð îïèñàííîé îêðóæíîñòè;

d – äèàãîíàëü.

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

11. Ôîðìóëà äèàãîíàëè êâàäðàòà ÷åðåç ëèíèþ, êîòîðàÿ âûõîäèò èç óãëà íà ñåðåäèíó ñòîðîíû êâàäðàòà:

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò. 

C – ëèíèÿ, êîòîðàÿ âûõîäèò èç óãëà íà ñåðåäèíó ñòîðîíû êâàäðàòà;

d – äèàãîíàëü.

Ãåîìåòðè÷åñêèå ôèãóðû. Êâàäðàò.

Ïåðèìåòð êâàäðàòà. Ïëîùàäü êâàäðàòà.

Âïèñàííûé êðóã â êâàäðàò – ýòî êðóã, ïðèìûêàþùèé ê ñåðåäèíàì ñòîðîí êâàäðàòà è èìåþùèé öåíòð íà ïåðåñå÷åíèè äèàãîíàëåé êâàäðàòà.

Ðàäèóñ âïèñàííîé îêðóæíîñòè — ñòîðîíà êâàäðàòà (ïîëîâèíà).

Ïëîùàäü êðóãà âïèñàííîãî â êâàäðàò ìåíüøå ïëîùàäè êâàäðàòà â π/4 ðàçà.

Êðóã, îïèñàííûé âîêðóã êâàäðàòà — ýòî êðóã, êîòîðûé ïðîõîäèò ÷åðåç 4-ðå âåðøèíû êâàäðàòà è êîòîðûé èìååò öåíòð íà ïåðåñå÷åíèè äèàãîíàëåé êâàäðàòà.

Ðàäèóñ îêðóæíîñòè îïèñàííîé âîêðóã êâàäðàòà áîëüøå ðàäèóñà âïèñàííîé îêðóæíîñòè â √2 ðàç.

Ðàäèóñ îêðóæíîñòè îïèñàííîé âîêðóã êâàäðàòà ðàâåí 1/2 äèàãîíàëè.

Ïëîùàäü êðóãà îïèñàííîãî âîêðóã êâàäðàòà áîëüøàÿ ïëîùàäü òîãî æå êâàäðàòà â π/2 ðàç.

Источник

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

СОДЕРЖАНИЕ СТАТЬИ

1. Параллелограмм

Сложное слово «параллелограмм»? А скрывается за ним очень простая фигура.

Смотри:

Параллелограмм.Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны

Ну, то есть, взяли две параллельные прямые:

Параллельные прямые

Пересекли ещё двумя:

параллельные прямые 2.

И вот внутри – параллелограмм!

Какие же есть свойства у параллелограмма?

Свойства параллелограмма.

То есть, чем можно пользоваться, если в задаче дан параллелограмм?

На этот вопрос отвечает следующая теорема:

В любом параллелограмме:

  1. Противоположные стороны равны
  2. Противоположные углы равны
  3. Диагонали делятся пополам точкой пересечения

Давай нарисуем все подробно.

Что означает первый пункт теоремы? А то, что если у тебя ЕСТЬ параллелограмм, то непременно

Противоположные стороны параллелограмма равны.  и
 .

Второй пункт означает, что если ЕСТЬ параллелограмм, то, опять же, непременно:

Противоположные углы параллелограмма равны.  и
 

Ну, и наконец, третий пункт означает, что если у тебя ЕСТЬ параллелограмм, то обязательно:

Диагонали в параллелограмме делятся пополам точкой пересечения.  и
 

Видишь, какое богатство выбора? Что же использовать в задаче? Попробуй ориентироваться на вопрос задачи, или просто пробуй все по очереди – какой-нибудь «ключик» да подойдёт.

А теперь зададимся другим вопросом: а как узнать параллелограмм «в лицо»? Что такое должно случиться с четырехугольником, чтобы мы имели право выдать ему «звание» параллелограмма?

На этот вопрос отвечает несколько признаков параллелограмма.

Признаки параллелограмма.

Внимание! Начинаем.

  • Признак 1. Если у четырехугольника две стороны равны и параллельны, то это – параллелограмм.
Признак параллелограмма 1. ;       — параллелограмм.

  — паралелограмм.

  • Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.
Признак параллелограмма 2. ;       – параллелограмм.
  • Признак 3. Если у четырехугольника противоположные углы равны, то это – параллелограмм.
Признак параллелограмма 3. ;      – параллелограмм.
  • Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.
Признак параллелограмма 4. ;       – параллелограмм.

Обрати внимание: если ты нашёл хотя бы один признак в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:

Признаки параллелограмма. Свойства параллелограмма.

2. Прямоугольник

Думаю, что для тебя вовсе не явится новостью то, что

Прямоугольник.Прямоугольник – четырехугольник, все углы которого прямые.

Первый вопрос: а является ли прямоугольник параллелограммом?

Конечно, является! Ведь у него   и   — помнишь, наш признак 3?

А отсюда, конечно же, следует, что у прямоугольника, как и у всякого параллелограмма   и  , а диагонали точкой пересечения делятся пополам.

Но есть у прямоугольника и одно отличительноесвойство.

Свойство прямоугольника

Диагонали прямоугольника.Диагонали прямоугольника равны:  .

Почему это свойство отличительное? Потому что ни у какого другого параллелограмма не бывает равных диагоналей. Сформулируем более чётко.

Свойство прямоугольника.Если у параллелограмма равны диагонали, то это — прямоугольник.

Обрати внимание: чтобы стать прямоугольником, четырехугольнику нужно сперва стать параллелограммом, а потом уже предъявлять равенство диагоналей.

3. Ромб

Ромб.Ромб – четырехугольник, все стороны которого равны между собой.

И снова вопрос: ромб – это параллелограмм или нет?

С полным правом – параллелограмм, потому что у него   и   (вспоминаем наш признак 2).

И снова, раз ромб – параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

  • Свойство 1. Диагонали ромба перпендикулярны.
Свойство ромба 1.  (если ты забыл, напомню:  — значок перпендикулярности)
  • Свойство 2. Диагонали ромба являются биссектрисами его углов.

Посмотри на картинку:

Свойство ромба 2.

Как и в случае с прямоугольником, свойства эти – отличительные, то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм, а именно ромб.

Признаки ромба

  • Признак 1. Если в параллелограмме диагонали перпендикулярны, то это ромб.

Признак ромба 1.

  • Признак 2. Если в параллелограммехотя бы одна из диагоналей делит пополам оба угла, через которые она проходит, то этот параллелограмм – ромб.

Признак ромба 2.

И снова обрати внимание: должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм. Убедись:

Ромбом может быть только параллелограмм.разве это ромб?

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ   – биссектриса углов   и  . Но … диагонали не делятся, точкой пересечения пополам, поэтому   – НЕ параллелограмм, а значит, и НЕ ромб.

4. Квадрат

КвадратКвадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые.

То есть квадрат – это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Квадрат, прямоугольник, ромб.У квадрата угол между диагональю и стороной равен  .

Понятно почему? Квадрат — ромб   – биссектриса угла A, который равен  . Значит   делит   (да и   тоже) на два угла по  .

Диагонали квадрата.Диагонали квадрата равны, перпендикулярны и делятся точкой пересечения пополам.

Ну, это совсем ясно: прямоугольник  диагонали равны; ромб  диагонали перпендикулярны, и вообще – параллелограмм  диагонали делятся точкой пересечения пополам.

Диагональ квадрата.Если сторона квадрата равна  , то его диагональ равна  .

Почему? Ну, просто применим теорему Пифагора к  .

Значит,  .

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны.

Параллелограмм.

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма» означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Итак,

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Параллелограмм. Доказательство теоремы.Давай проведём диагональ  . Что получится?
Два треугольника:   и  .

Раз   – параллелограмм, то :

  •    как накрест лежащие
  •    как накрест лежащие.

Значит,   (по II признаку:   и   — общая.)

Ну вот, а раз  , то   и   – всё! – доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь   (смотри на картинку), то есть  , а   именно потому, что  .

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

Параллелограмм. Доказательство теоремы 2.Мы уже выяснили, что  . Давай снова отметим равные накрест лежащие углы (посмотри и убедись, что все верно).

И теперь видим, что   — по II признаку (  угла и сторона «между» ними).

Параллелограмм. Доказательство теоремы 3.Значит,   (напротив углов   и  ) и   (напротив углов   и   соответственно).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос «как узнать?», что фигура является параллелограммом.

Признак 1. Если у четырехугольника две стороны равны и параллельны, то это параллелограмм.

В значках это так:

Параллелограмм. Признак №1 - 1. ;     – параллелограмм.

Почему? Хорошо бы понять, почему   – этого хватит. Но смотри:

Параллелограмм. Признак №1 - 2.  по 1 признаку:  ,  — общая и   как накрест лежащие при параллельных   и   и секущей  .

А раз  ,

Параллелограмм. Признак №1 - 2то   (лежат напротив   и   соответственно). Но это значит, что   (  и   — накрест лежащие и оказались равны).

Ну вот и разобрались, почему признак 1 верен.

Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.

Параллелограмм. Признак №2 - 1 ,     – параллелограмм.

Ну, это ещё легче! Снова проведём диагональ  .

Параллелограмм. Признак №2 - 2.Теперь   просто по трём сторонам.

А значит:

Параллелограмм. Признак №2 - 3.   и   , то есть   – параллелограмм.

Признак 3. Если у четырёхугольника противоположные углы равны, то это – параллелограмм.

Параллелограмм. Признак №3 - 1 ,     – параллелограмм.

И тоже несложно. Но …по-другому!

Параллелограмм. Признак №2 - 2  (ведь   – четырехугольник, а  ,   по условию).

Значит,  . Ух! Но   и   – внутренние односторонние при секущей  !

Поэтому тот факт, что   означает, что  .

А если посмотришь с другой стороны, то   и   – внутренние односторонние при секущей  ! И поэтому  .

Видишь, как здорово?!

Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.

Параллелограмм. Признак №3 - 1 ;       – параллелограмм.

И опять просто:

Параллелограмм. Признак №3 - 2 ,   как вертикальные  ,  , и  .

Точно так же  ,    , и  .

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмм