Какое общее свойство имеют жидкости и газы

Какое общее свойство имеют жидкости и газы thumbnail
Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характерное свойство жидких и газообразных тел – их текучесть, то есть малая сопротивляемость деформации сдвига: если скорость сдвига стремится к нулю, то силы сопротивления жидкости или газа этой деформации также стремятся к нулю. Иными словами, жидкие и газообразные вещества не обладают упругостью формы – они легко принимают форму того сосуда, в котором находятся.

Для изменения объема V жидкости или газа требуются конечные внешние силы. При изменении объема в результате внешних воздействий в жидкости и газе возникают упругие силы, которые уравновешивают действие внешних сил. Упругие свойства жидкости и газа определяются тем, что отдельные части их действуют друг на друга (взаимодействуют) или на соприкасающиеся с ними тела с силой, зависящей от степени сжимаемости жидкости или газа. Соответствующее взаимодействие характеризуют величиной, называемой давлением P.

Рассмотрим жидкость, находящуюся в равновесии, то есть в условиях, когда отдельные ее части не перемещаются друг относительно друга. Выделим элементарную площадку в жидкости DS (см. рис. 5.1). На DS действуют силы со стороны других частей жидкости, равные по величине, но противоположные по направлению. Для выяснения характера этих сил мысленно уберем жидкость над DS, и заменим ее равнодействующей силой Df, так, чтобы состояние других частей не было нарушено. Эти силы должны быть перпендикулярны DS, так как в противном случае тангенциальная составляющая сил привела бы частицы жидкости в движение вдоль DS, и равновесие было бы нарушено. Следовательно, равновесие жидкости будет иметь место, когда равнодействующая всех сил Df перпендикулярна DS.

Силу Df , отнесенную к единице поверхности площадки DS, называют давлением P, то есть

(5.1.1)

Если сила Df распределяется по DS неравномерно, то выражение (5.1.1) определяет среднее значение давления Pср. Чтобы найти давление в данной точке, необходимо устремить площадь DS к нулю: Давление в газе определяется аналогичным образом. Давление – скалярная величина и в системе СИ измеряется в Паскалях – Па = Н/м2.

Дата добавления: 2014-11-18; Просмотров: 2550; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

Известно, что все, что окружает человека, включая и его самого, — это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они — из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

свойства жидкостей

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма — сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде — водород, азот, кислород и другие.
  3. Жидкие металлы — ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры — типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.

назовите свойства жидкостей

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Читайте также:  Какое из пяти данных ниже польских слов обладает тем же свойством

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: «Назовите свойства жидкостей» человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

основные свойства жидкости

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, — это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

физические свойства жидкости

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода — очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: «Назовите свойства жидкостей» сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой — воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

свойства жидкостей и газов

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к «хождению» по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них — текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Читайте также:  Каким свойством обладает крапива

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.

  1. Жидкость — газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды — часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость — насыщенный пар.
  2. Жидкость — твердые вещества. Особенно на таких системах заметно еще одно свойство — смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).

    свойства жидкостей и твердых тел

В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие — это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение — это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация — процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе — испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

общие свойства газов и жидкостей

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества — одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел — это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • «лизун», которым играют дети;
  • «хенд гам», или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.
Читайте также:  Какими свойствами обладает йод

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

механические свойства жидкости

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости — достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Источник

Анонимный вопрос  ·  14 февраля 2018

1,2 K

Какими свойствами обладают воздух и вода?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

????Свойства воздуха????

✅Он прозрачен
✅Бесцветный
✅Не имеет запаха
✅При нагревании расширяется
✅При охлаждении сжимается
✅Сохраняет тепло
✅Сжимаем и упруг
✅Легче воды
✅Не имеет вкуса
✅Состоит из смеси газов

????Свойства воды ????

✅Прозрачная
✅Не имеет запаха

✅Обладает текучестью
✅Бесцветна
✅Является растворителем
✅Расширяется при нагревании
✅Сжимается при охлаждении
✅Из жидкого состояния может перейти в газообразное
✅Из жидкого состояния может перейти в твёрдое
✅Принимает форму сосуда

Железо твёрдое, потому что в нём молекулы и атомы спрессованы ближе друг у другу или в чём причина?

Researcher, Institute of Physics, University of Tartu

Нужно сначала избежать путаницы — «твердое» может значить две вещи: 1) агрегатное состояние, как твердое-жидкое-газ, и 2) механическая характеристика — твердость, как алмаз твердый, а мел — мягкий. Эти вещи в принципе связаны, но связь сложна и неоднозначная, поэтому не будем о ней :). Вероятно, Вы имеете в виду второе, механическую твердость (хотя железо отнюдь не чемпион, а вполне себе средненький материал по твердости, скорее для него имеет смысл говорить о довольно высокой прочности и пластичности).

Вы правы в том, что чем ближе элементы (молекулы, атомы, ионы) решетки друг к другу, тем прочнее будет свзь между ними. Но ключевым параметром здесь является тип химической связи, поскольку расстояние между атомами (молекулами, ионами) в решетке во многом определяется именно типом связи. Для железа, как и для других металлов, характерен металлический тип связи, когда, ну скажем, ионы металла в узлах решетки, а вокруг них общее электронное облако (это не совсем точное описание, но сгодится). Это дает 1) пластичность, поскольку связь кулоновская, а значит ненаправленная + ослабевает не так быстро при изменении расстояния. То есть, при сдвиге ионов из позиций (при механическом воздействии) связи не рвутся сразу, а имеют некий «запас прочности», 2) прочность, поскольку кулоновское взаимодействие достаточно сильное. Вот металлы они такие и есть — пластичные и прочные. Степень прочности/пластичности/твердости будет определяться во многом симметрией решетки, параметрами электронного газа и т.д.

Это можно сравнить с атомными кристаллами (типа того же алмаза) с ковалентными связями между атомами в узлах решетки (твердость может быть и повыше, поскольку если расстояние между атомами короткие, то энергия связи может быть очень высока. Зато пластичности никакой — связь направленная, любое смещение атома ее рвет). Или с молекулярными кристаллами, где связь между молекулами в узлах решетки Ван-дер-ваальсова (прочность никакая, поскольку энергия связи маленькая, зато пластичность может быть неплохая, поскольку связь ненаправленная, вопрос только в том, чтобы механическое воздействие было не слишком сильное, поскольку независимо от пластичности предел прочности очень низкий). Решетки с одним и тем же типом химсвязи всегда будут иметь много общего, хотя и могут различаться между собой достаточно сильно по количественным критериям в зависимости от других параметров.

Какое давление на стенки сосуда производят молекулы газа?

бегаю марафоны, люблю Таню

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

p=1/3 * m0 * n * υ²

Концентрацию молекул газа n находят как отношение числа молекул N к объему газа V:

n = N/V

Тогда имеем:

p=m0 *N * υ²/3V

Произведение массы одной молекулы m0 на количество молекул N по смыслу есть масса газа m, поэтому:

p=m * υ²/3V

Подставив в эту формулу исходные данные, можно вычислить какое давление на стенки сосуда производят молекулы газа.

Прочитать ещё 1 ответ

Источник