Какое количество информации содержится
Количество информации
Количество информации как мера уменьшения неопределенности знания.
(Содержательный подход к определению количества информации)
Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.). Получение новой информации приводит к расширению знаний или, как иногда говорят, к уменьшению неопределенности знания. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Например, после сдачи зачета или выполнения контрольной работы вы мучаетесь неопределенностью, вы не знаете, какую оценку получили. Наконец, учитель объявляет результаты, и вы получаете одно из двух информационных сообщений: «зачет» или «незачет», а после контрольной работы одно из четырех информационных сообщений: «2», «3», «4» или «5».
Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности вашего знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности вашего знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.
Ясно, что чем более неопределенна первоначальная ситуация (чем большее количество информационных сообщений возможно), тем больше мы получим новой информации при получении информационного сообщения (тем в большее количество раз уменьшится неопределенность знания).
Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.
Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:
Бит. Для количественного выражения любой величины необходимо сначала определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы — килограмм и т. д. Аналогично, для определения количества информации необходимо ввести единицу измерения.
За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа битом.
Если вернуться к рассмотренному выше получению информационного сообщения о результатах зачета, то здесь неопределенность как раз уменьшается в два раза и, следовательно, количество информации, которое несет сообщение, равно 1 биту.
Производные единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей — байт, причем:
1 байт = 8 битов = 23 битов.
В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10n, где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам «Кило» (103), «Мега» (106), «Гига» (109) и т. д.
В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2n
Так, кратные байту единицы измерения количества информации вводятся следующим образом:
1 килобайт (Кбайт) = 210 байт = 1024 байт;
1 мегабайт (Мбайт) = 210 Кбайт = 1024 Кбайт;
1 гигабайт (Гбайт) = 210 Мбайт = 1024 Мбайт.
Контрольные вопросы
- 1. Приведите примеры информационных сообщений, которые приводят к уменьшению неопределенности знания.
2. Приведите примеры информационных сообщений, которые несут 1 бит информации.
Определение количества информации
Определение количества информационных сообщений.По формуле (1.1) можно легко определить количество возможных информационных сообщений, если известно количество информации. Например, на экзамене вы берете экзаменационный билет, и учитель сообщает, что зрительное информационное сообщение о его номере несет 5 битов информации. Если вы хотите определить количество экзаменационных билетов, то достаточно определить количество возможных информационных сообщений об их номерах по формуле (1.1):
N = 25 = 32.
Таким образом, количество экзаменационных билетов равно 32.
Определение количества информации. Наоборот, если известно возможное количество информационных сообщений N, то для определения количества информации, которое несет сообщение, необходимо решить уравнение относительно I.
Представьте себе, что вы управляете движением робота и можете задавать направление его движения с помощью информационных сообщений: «север», «северо-восток», «восток», «юго-восток», «юг», «юго-запад», «запад» и «северо-запад» (рис. 1.11). Какое количество информации будет получать робот после каждого сообщения?
Рис. 1.4. Управление роботом с использованием информационных сообщений |
Всего возможных информационных сообщений 8, поэтому формула (1.1) принимает вид уравнения относительно I:
8 = 2I.
Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:
8 = 2 × 2 × 2 = 23.
Наше уравнение:
23 = 2I.
Равенство левой и правой частей уравнения справедливо, если равны показатели степени числа 2. Таким образом, I = 3 бита, т. е. количество информации, которое несет роботу каждое информационное сообщение, равно 3 битам.
Алфавитный подход к определению количества информации
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Информационная емкость знака. Представим себе, что необходимо передать информационное сообщение по каналу передачи информации от отправителя к получателю. Пусть сообщение кодируется с помощью знаковой системы, алфавит которой состоит из N знаков {1, …, N}. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений «1», «2», …, «N», которое будет нести количество информации I (рис. 1.5).
Рис. 1.5. Передача информации |
Формула (1.1) связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N — это количество знаков в алфавите знаковой системы, а I — количество информации, которое несет каждый знак:
N = 2I.
С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:
N = 2 => 2 = 2I => 21 = 2I => I=1 бит.
Таким образом, в двоичной знаковой системе знак несет 1 бит информации. Интересно, что сама единица измерения количества информации «бит» (bit) получила свое название ОТ английского словосочетания «Binary digiT» — «двоичная цифра».
Информационная емкость знака двоичной знаковой системы составляет 1 бит.
Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак. В качестве примера определим количество информации, которое несет буква русского алфавита. В русский алфавит входят 33 буквы, однако на практике часто для передачи сообщений используются только 32 буквы (исключается буква «ё»).
С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:
N = 32 => 32 = 2I => 25 = 2I => I=5 битов.
Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).
Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.
В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы «а» она наименьшая, а у буквы «ф» — наибольшая).
Количество информации в сообщении. Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.
Если знаки несут одинаковое количество информации, то количество информации Ic в сообщении можно подсчитать, умножив количество информации Iз, которое несет один знак, на длину кода (количество знаков в сообщении) К:
Ic = Iз× K
Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут информацию в 2 бита, три цифры — в 3 бита и т. д. Количество информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.1).
Таблица 1.1. Количество информации, которое несет двоич ный компьютерный код
Двоичный компьютерный код | 1 | 1 | 1 | ||
Количество информации | 1 бит | 1 бит | 1 бит | 1 бит | 1 бит |
Свойство полноты информации негласно предполагает, что имеется возможность измерять количество информации. Какое количество информации содержится в данной книге, какое количество информации в популярной песенке? Что содержит больше информации: роман «Война и мир» или сообщение, полученное в письме от товарища? Ответы на подобные вопросы не просты и не однозначны, так как во всякой информации присутствует субъективная компонента. А возможно ли вообще объективно измерить количество информации? Важнейшим результатом теории информации является вывод о том, что в определенных, весьма широких условиях, можно, пренебрегая качественными особенностями информации, выразить ее количество числом, а следовательно, сравнивать количество информации, содержащейся в различных группах данных.
Количеством информации называют числовую характеристику информации, отражающую ту степень неопределенности, которая исчезает после получения информации.
Рассмотрим пример: дома осенним утром, старушка предположила, что могут быть осадки, а могут и не быть, а если будут, то в форме снега или в форме дождя, т.е. «бабушка надвое сказала — то ли будет, то ли нет, то ли дождик, то ли снег». Затем, выглянув в окно, увидела пасмурное небо и с большой вероятностью предположила — осадки будут, т.е., получив информацию, снизила количество вариантов выбора. Далее, взглянув на наружный термометр, она увидела, что температура отрицательная, значит, осадки следует ожидать в виде снега. Таким образом, получив последние данные о температуре, бабушка получила полную информацию о предстоящей погоде и исключила все, кроме одного, варианты выбора.
Приведенный пример показывает, что понятия «информация», «неопределенность», «возможность выбора» тесно связаны. Получаемая информация уменьшает число возможных вариантов выбора (т.е. неопределенность), а полная информация не оставляет вариантов вообще.
За единицу информации принимается один бит (англ, bit — binary digit — двоичная цифра). Это количество информации, при котором неопределенность, т.е. количество вариантов выбора, уменьшается вдвое или, другими словами, это ответ на вопрос, требующий односложного разрешения — да или нет.
Бит — слишком мелкая единица измерения информации. На практике чаще применяются более крупные единицы, например, байт, являющийся последовательностью из восьми бит. Именно восемь битов, или один байт, используется для того, чтобы закодировать символы алфавита, клавиши клавиатуры компьютера. Один байт также является минимальной единицей адресуемой памяти компьютера, т.е. обратиться в память можно к байту, а не биту.
Широко используются еще более крупные производные единицы информации:
1 Килобайт (Кбайт) = 1024 байт = 210 байт,
1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,
1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт,
1 Терабайт (Тбайт) — 1024 Гбайт = 240 байт.
За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (бит) единица информации. Но данная единица используется редко в компьютерной технике, что связано с аппаратными особенностями компьютеров.
Информационные процессы
Получение информации тесно связано с информационными процессами, поэтому имеет смысл рассмотреть отдельно их виды.
Сбор данных — это деятельность субъекта по накоплению данных с целью обеспечения достаточной полноты. Соединяясь с адекватными методами, данные рождают информацию, способную помочь в принятии решения. Например, интересуясь ценой товара, его потребительскими свойствами, мы собираем информацию для того, чтобы принять решение: покупать или не покупать его.
Передача данных — это процесс обмена данными. Предполагается, что существует источник информации, канал связи, приемник информации, и между ними приняты соглашения о порядке обмена данными, эти соглашения называются протоколами обмена. Например, в обычной беседе между двумя людьми негласно принимается соглашение, не перебивать друг друга во время разговора.
Хранение данных — это поддержание данных в форме, постоянно готовой к выдаче их потребителю. Одни и те же данные могут быть востребованы не однажды, поэтому разрабатывается способ их хранения (обычно на материальных носителях) и методы доступа к ним по запросу потребителя.
Обработка данных — это процесс преобразования информации от исходной ее формы до определенного результата. Сбор, накопление, хранение информации часто не являются конечной целью информационного процесса. Чаще всего первичные данные привлекаются для решения какой-либо проблемы, затем они преобразуются шаг за шагом в соответствии с алгоритмом решения задачи до получения выходных данных, которые после анализа пользователем предоставляют необходимую информацию.
Обобщая сказанное, можно предложить следующую структурную схему (рис. 1.2):
Рис. 1.2. Структура информатики
Статьи к прочтению:
- Понятие нормализации отношений
- Понятие об иерархической модели. иерархическая модель visual basic for application.
10 САМЫХ сложных ВАРИАНТОВ выбора (ТЕСТ на ТВОЮ личность)
Похожие статьи:
Информация, качество и количество информации
ЛЕКЦИЯ №1. ПОНЯТИЕ ИНФОРМАЦИИ. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЦЕССОВ СБОРА, ПЕРЕДАЧИ, ОБРАБОТКИ И НАКОПЛЕНИЯ ИНФОРМАЦИИ План o Информация, качество и количество…
Измерение количества информации, единицы измерения информации
Лекция 3 — 4. Теория информации Теория информации: понятие информации и ее измерение; количество и качество информации; единицы измерения информации;…
Какое количество информации содержится, к примеру, в тексте романа
«Война и мир», во фресках Рафаэля или в генетическом коде человека? Ответа на
эти вопросы наука не даёт и, по всей вероятности, даст не скоро.
А возможно ли объективно измерить количество информации? Важнейшим
результатом теории информации является следующий вывод:
В настоящее время получили распространение подходы к определению понятия
«количество информации», основанные на том, что информацию, содержащуюся
в сообщении, можно нестрого трактовать в смысле её новизны или, иначе,
уменьшения неопределённости наших знаний об объекте.
Эти подходы используют математические понятия вероятности и логарифма.
Если вы еще не знакомы с этими понятиями, то можете пока пропустить этот материал.
Подходы к определению количества информации. Формулы Хартли и Шеннона.
Американский инженер Р. Хартли в 1928 г. процесс получения
информации рассматривал как выбор одного сообщения из конечного наперёд
заданного множества из N равновероятных сообщений, а количество информации I,
содержащееся в выбранном сообщении, определял как двоичный логарифм N.
Формула Хартли:
I = log2N
Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле
Хартли можно вычислить, какое количество информации для этого требуется:
I = log2100 > 6,644. Таким образом,
сообщение о верно угаданном числе содержит количество информации,
приблизительно равное 6,644 единицы информации.
Приведем другие примеры равновероятных сообщений:
- при бросании монеты: «выпала решка», «выпал орел»;
- на странице книги: «количество букв чётное», «количество букв
нечётное».
Определим теперь, являются ли равновероятными сообщения «первой выйдет
из дверей здания женщина» и «первым выйдет из дверей здания мужчина».
Однозначно ответить на этот вопрос нельзя. Все зависит от того,
о каком именно здании идет речь. Если это, например, станция метро, то
вероятность выйти из дверей первым одинакова для мужчины и женщины, а если
это военная казарма, то для мужчины эта вероятность значительно выше, чем
для женщины.
Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г.
другую формулу определения количества информации, учитывающую возможную
неодинаковую вероятность сообщений в наборе.
Формула Шеннона:
I = ( p1log2
p1 + p2
log2 p2
+ . . . + pN log2
pN),
где pi вероятность того, что именно
i-е сообщение выделено в наборе из N сообщений.
Легко заметить, что если вероятности p1, …, pN
равны, то каждая из них равна 1 / N, и формула Шеннона превращается
в формулу Хартли.
Помимо двух рассмотренных подходов к определению количества информации, существуют
и другие. Важно помнить, что любые теоретические результаты применимы
лишь к определённому кругу случаев, очерченному первоначальными допущениями.
В качестве единицы информации Клод Шеннон предложил принять один бит (англ.
bit binary digit двоичная цифра).
Бит слишком мелкая единица измерения. На практике чаще применяется более крупная
единица байт, равная восьми битам.
Именно восемь битов требуется для того, чтобы закодировать любой из
256 символов алфавита клавиатуры компьютера (256=28).
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в
употребление такие производные единицы, как:
За единицу информации можно было бы выбрать количество информации, необходимое для
различения, например, десяти равновероятных сообщений. Это будет не двоичная
(бит), а десятичная (дит) единица информации.
Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:
Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.
Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?
Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.
Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.
Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.
Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:
1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.
Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=23битам, а 1Мбайт=210Кбайт=220байт=223бит. Отсюда, 2Мбайт=224бит.
Ответ: 224бит.
Задача 5. Сколько мегабайт информации содержит сообщение объемом 223бит?
Решение: Поскольку 1байт=8битам=23битам, то
223бит=223*223*23бит=210210байт=210Кбайт=1Мбайт.
Ответ: 1Мбайт
Задача 6. Один символ алфавита «весит» 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:
i=4 | По формуле N=2i находим N=24, N=16 |
Найти: N — ? |
Ответ: 16
Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:
i=8 | По формуле N=2i находим N=28, N=256 |
Найти:N — ? |
Ответ: 256
Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:
N=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:
N=100 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 10. У племени «чичевоков» в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:
N=24+8=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:
K=360000 | Определим количество символов в книге 150*40*60=360000. Один символ занимает один байт. По формуле I=K*iнаходим I=360000байт 360000:1024=351Кбайт=0,4Мбайт |
Найти: I— ? |
Ответ: 351Кбайт или 0,4Мбайт
Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:
I=128Кбайт,i=2байт | В кодировке Unicode один символ занимает 2 байта. Из формулыI=K*i выразимK=I/i,K=128*1024:2=65536 |
Найти: K— ? |
Ответ: 65536
Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:
I=1,5Кбайт,K=3072 | Из формулы I=K*i выразимi=I/K,i=1,5*1024*8:3072=4 |
Найти: i— ? |
Ответ: 4
Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:
N=64, K=20 | По формуле N=2i находим 64=2i, 26=2i,i=6. По формуле I=K*i I=20*6=120 |
Найти: I— ? |
Ответ: 120бит
Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:
N=16, I=1/16 Мбайт | По формуле N=2i находим 16=2i, 24=2i,i=4. Из формулы I=K*i выразим K=I/i, K=(1/16)*1024*1024*8/4=131072 |
Найти: K— ? |
Ответ: 131072
Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:
K=2048,I=1/512 Мбайт | Из формулы I=K*i выразим i=I/K, i=(1/512)*1024*1024*8/2048=8. По формулеN=2iнаходим N=28=256 |
Найти: N— ? |
Ответ: 256
Задачи для самостоятельного решения:
- Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
- Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
- Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
- Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
- Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
- Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
- Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
- Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
- Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
- Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.