Какое количество хромосом содержится в клетках человека

Какое количество хромосом содержится в клетках человека thumbnail

Геном человека — совокупность наследственного материала, заключённого в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований[1].

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях. Полное секвенирование выявило, что человеческий геном содержит 20—25 тыс. активных генов[2], что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) — то есть только 1,5 % всего генетического материала кодирует белки или функциональные РНК. Остальная часть является некодирующей ДНК, которую часто называют мусорной ДНК[3], но которая, как оказалось, играет важную роль в регуляции активности генов[4][5].

Особенности[править | править код]

Хромосомы[править | править код]

Геном человека состоит из 23 пар хромосом (всего 46 хромосом). Каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.

В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y-хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом[6][7].

Гены[править | править код]

Предварительные оценки предполагали наличие в геноме человека более 100 тысяч генов. По результатам проекта «Геном человека» количество генов, а точнее открытых рамок считывания, составило около 28 000 генов. В связи с усовершенствованием методов поиска (предсказания) генов предполагается дальнейшее уменьшение числа генов.

Число генов у человека лишь ненамного больше, чем у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бендами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме генов, кодирующих белки, человеческий геном содержит тысячи РНК-генов, кодирующих транспортные РНК (tRNA), рибосомные РНК, микроРНК и прочие РНК, не кодирующие белок.

Регуляторные последовательности[править | править код]

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию генов. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно данным молекулярных часов, эволюционные линии человека и мыши разделились около 100 миллионов лет назад[8]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности, идентичные или очень слабо отличающиеся в сравниваемых геномах) в некодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов у обоих организмов[9].

Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8 раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов[10].

Прочие объекты в геноме[править | править код]

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома[3]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, пока не выяснена. Эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

  • повторы
    • тандемные повторы
      • сателлитная ДНК
      • минисателлиты
      • микросателлиты
    • диспергированные повторы
      • SINEs (short interspersed nuclear elements)
      • LINEs (long interspersed nuclear elements)
  • транспозоны
    • ретротранспозоны
      • LTR-ы (long terminal repeat)
        • Ty1-copia
        • Ty3-gypsy
      • Не-LTR-ы
    • ДНК-транспозоны
  • псевдогены

Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент[когда?].

Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и эти участки генома многие называют мусорной ДНК. Однако есть масса свидетельств в пользу того, что эти объекты обладают некоторой функцией, которая пока неясна.

Псевдогены[править | править код]

Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции[11].

Вирусы[править | править код]

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты[12]. Большинство ретровирусов встроились в геном предков человека свыше 25 млн лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено[13][14].

Информационное содержание генома человека[править | править код]

Азотистые основания в ДНК (аденин, тимин, гуанин, цитозин) соответствуют 4 различным логическим состояниям, что эквивалентно 2 битам информации[15]. Таким образом, геном человека содержит более 6 гигабит информации в каждой цепи, что эквивалентно 800 мегабайтам и сопоставимо с количеством информации на компакт-диске[16]. Логика хранения данных в парных основаниях аналогична системе виртуализации данных RAID 1.

См. также[править | править код]

  • Гаплогруппы
  • Проект «Геном человека»

Примечания[править | править код]

  1. ↑ Talking glossary of genetic terms: genome (англ.). National Human Genome Research Institute. Дата обращения 1 ноября 2012. Архивировано 4 ноября 2012 года.

  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. (англ.) // Nature. — 2004. — Vol. 431, no. 7011. — P. 931—945. — doi:10.1038/nature03001. — PMID 15496913.
  3. 1 2 International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. (англ.) // Nature. — 2001. — Vol. 409, no. 6822. — P. 860—921. — doi:10.1038/35057062. — PMID 11237011.
  4. ↑ «Мусорная» ДНК помогает включать гены.
  5. ↑ «Мусорная» ДНК играет важнейшую роль в поддержании целостности генома.
  6. Tjio J. H., Levan A. The chromosome number of man (англ.) // Hereditas (англ.)русск.. — 1956. — Vol. 42. — P. 1—6. — doi:10.1111/j.1601-5223.1956.tb03010.x. — PMID 345813. Первая работа с точно установленным числом хромосом у человека.
  7. ↑ Human Chromosome Number, здесь рассказана история подсчёта хромосом у человека

  8. Nei M., Xu P., Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2001. — Vol. 98, no. 5. — P. 2497—2502. — doi:10.1073/pnas.051611498. — PMID 11226267.

  9. Loots G., Locksley R., Blankespoor C., Wang Z., Miller W., Rubin E., Frazer K. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. (англ.) // Science. — 2000. — Vol. 288, no. 5463. — P. 136—140. — doi:10.1126/science.288.5463.136. — PMID 10753117.
    Summary

  10. Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome (англ.) (недоступная ссылка). Genoscope. Дата обращения 12 сентября 2006. Архивировано 20 августа 2002 года.

  11. Claverie J. Fewer genes, more noncoding RNA. (англ.) // Science. — 2005. — Vol. 309, no. 5740. — P. 1529—1530. — doi:10.1126/science.1116800. — PMID 16141064.
  12. ↑ Предки человека заимствовали полезные гены у вирусов
  13. Eugene D. Sverdlov. Retroviruses and primate evolution // BioEssays. — Vol. 22, № 2. — P. 161—171. — doi:10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X. — PMID 10655035.
  14. Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 266. — doi:10.1186/1471-2148-8-266. — PMID 18826608.
  15. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 25. — 240 с. — ISBN 5-7050-0118-5.
  16. ↑ How much information does human DNA store? — Quora

Список литературы[править | править код]

  • Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
  • Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4

Ссылки[править | править код]

  • Всеобщая декларация о геноме человека и правах человека ЮНЕСКО, 1997
  • Lindblad-Toh K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. (англ.) // Nature. — 2005. — Vol. 438, no. 7069. — P. 803—819. — doi:10.1038/nature04338. — PMID 16341006.
  • The National Human Genome Research Institute
  • The National Office of Public Health Genomics

Источник

Анонимный вопрос  ·  23 января 2018

22,0 K

НЛО прилетело и опубликовало эту запись здесь.

Соматические клетки — это клетки тела, то есть все, кроме половых. Набор хромосом в них обычный — то есть диплоидный. Двойной, по-русски говоря.) Всякая хромосома имеет пару, всего их у человека получается 46.

А вот в половых он гаплоидный (одинарный). У человека — 23.

Каким образом две хромосомы могут постепенно мутировать в одну и при этом сохранять способность особи к размножению?

физик-теоретик в прошлом, дауншифтер и журналист в настоящем, живу в Германии

  1. Две хромосомы объединяются в одну не «постепенно», а мгновенно — в одной из половых клеток какого-то индивида. После оплодотворения рождается мутант.

  2. Мутант с двумя нормальными хромосомами и двумя слипшимися не обязательно нежизнеспособен и стерилен. И он не является новым видом.

  3. Нестерильный мутант может скрещиваться с нормальными особями предкового вида, гибриды не обязательно нежизнеспособны и необязательно стерильны. Особенно самки (если речь о млекопитающих). В итоге в популяции могут сосуществовать индивиды с ТРЕМЯ различными по количеству хромосом наборами, но гены на этих хромосомах на первых порах не будут отличаться от предковых. Подробно я все это вам уже расписал здесь

  4. Разное количество хромосом в общем случае не гарантирует полную репродуктивную стерильность. Вот конкретный вид (или несколько родственных видов) —  пунаре, разные популяции которого имеют разное число хромосом (28, 30 и 34), причем 28 и 30 способны скрещиваться, а гибридные самки-29 тоже фертильны. И ведь у представителя формы 30 две хромосомы слиплись не вчера! Там уже не только число хромосом отличается, но и некоторые гены успели по-разному мутировать… 

  5. В статье о пунаре подробно разжевано КАК и почему это возможно на хромосомном уровне. 

  6. И это не единственный вид (или группа родственных), где разное число хромосом до сих пор еще не привело к полной репродуктивной изоляции. Вот землеройки (PDF-файл). 

  7. И все это реальные живые звери, дающие реальное фертильное потомство, плюя на ваши схоластические домыслы о том, что они могут и что — нет.

Можно ли искусственно увеличить количество хромосом в клетке?

TQ умер. Это факт. А я ушел на просторах интернета искать более приятный сайт с…

В какой именно клетке? И с каким результатом? К примеру, селекционеры выводят сорта культурных растений с удвоенным (диплоидный) или учетверенным (тетраплоидный) набором хромосом.
У человека же увеличение количества всех или отдельных хромосом приводит к различным хромосомным болезням. Существенная их часть несовместима с жизнью, и беременность заканчивается выкидышем.

Почему ДНК митохондрий наследуется только по линии матери?

Чтобы ответить на вопрос, нужно понимать как устроен сперматозоид.

Он состоит из головки, шейки и хвостика. В головке находится ядро, в шейке митохондрии, в хвостике микрофиламенты образующие жгутик.

При слиянии сперматозоида с яйцеклеткой, проникает только его головка, а хвостик и шейка остаются за пределами яйцеклетки. В итоге будущий организм имеет митохондрии только те, что были в яйцеклетке, то есть митохондрии матери, поэтому митохондрии передаются только по материнской линии 🙂

8 хромосома за что отвечает?

Что может быть увлекательнее заботы о домашних питомцах) Люблю активно…

8 хромосома — это одна из 23 человеческих хромосом, количество генов в ней более 1400.

Отвечает за развитие интелекта, костно-мышечной системы, сердца, органов зрения и кроветворительной системы.

В этой хромосоме имеются гены мутации, которые могут вызвать такие заболевания: хондросаркома, эпилепсия, восприимчивость к атеросклерозу, лимфома Буркита, синдром Вернера.

Прочитать ещё 2 ответа

Источник

Сколько хромосом у человека, и какие важные функции они выполняют?

Генетика – сложная наука. С ее помощью можно просчитать законы наследственности, установить вероятность развития наследственных заболеваний. Однако многим людям ничего не известно об этой науке. Они даже не знают, сколько хромосом у человека, и что это вообще такое.

Что такое хромосомы?

Хромосомой называют структурные элементы клеточного ядра, которые содержат ДНК. В данном веществе заключена вся наследственная информация организма. Непосредственно в хромосомах располагаются гены в линейном порядке. Каждая клетка человеческого организма содержит 46 хромосом, которые разделены на 23 пары. 22 из них – аутосомы, а последняя пара состоит из Х- или Y-хромосомы, которые определяют пол человека.

Где находятся хромосомы и сколько их всего в организме, ученые узнали в 1956 году. С того времени установлено, что в организме каждого человека хромосомы находятся в ядрах и это соматические или половые хромосомы. Последние определяют пол будущего ребенка при зачатии. Женская яйцеклетка содержит две Х-хромосомы, а сперматозоид – одну Х и одну Y. Если передается Х-хромосома, родится девочка, а если Y – мальчик.

Строение хромосомы

Выяснив сколько хромосом у человека, рассмотрим основы их строения. Хромосома является палочковидной структурой, которая состоит из двух сестринских хроматид. Они удерживаются центромерой, располагающейся в области первичной перетяжки. Каждая из хроматид строится из хроматиновых петель. Сам хроматин не подвергается репликации, в отличие от ДНК. С началом этого процесса прекращается синтез РНК. При этом хромосомы находятся в организме в двух состояниях:

  • конденсированном (неактивное);
  • деконденсированном (активное).

В зависимости от строения генетики выделяют следующие виды хромосом:

  • телоцентрические;
  • акроцентрические – второе плечо короткое и практически незаметное;
  • субметацентрические – внешне напоминают букву L;
  • метацентрические – плечики равной длины.

где находятся хромосомы

Гомологичные хромосомы

Парные хромосомы человека принято называть гомологичными. При зачатии одна хромосома наследуется от отца, вторая – от матери. На гомологичных хромосомах располагаются гены, которые отличаются по строению, однако выполняют одинаковую функцию. Гомологичные хромосомы имеют схожую последовательность нуклеотидов. Такие хромосомы, расположенные в диплоидных клетках, имеют одинаковые гены. Количество наборов гомологичных хромосом обозначается термином «плоидность». В половых клетках она равна одному (1n), в соматических – двум (2n).

Негомологичные хромосомы

Негомологичные хромосомы – это структуры, которые содержат несхожие гены. Данные структурные элементы не подвергаются конъюгации в процессе мейоза. Негомологичные хромосомы независимо друг от друга комбинируются в клетке. Этот факт был доказан в процессе изучения характеристик наследования признаков путем использования прямого цитологического метода.

Количество хромосом у человека

О том, сколько хромосом содержится в клетке организма человека, известно со школьного курса биологии. Набор всех хромосом называется кариотипом. Он является видоспецифичным признаком – одинаков для всех отдельно взятых представителей рода живых существ. Так, в клетке человека содержится 23 пары хромосом, 22 из которых – аутосомы, а 1 пара – половые хромосомы (XX у женщин, XY – у мужчин).

Изменение общего количества хромосом в организме ведет к необратимым последствиям. В результате наблюдается развитие генных заболеваний, которые могут приводить к врожденным аномалиям развития и даже к гибели плода еще на внутриутробном этапе развития. Врачи стараются выявить возможные нарушения на ранних этапах, чтобы исключить появление на свет малышей с генными болезнями.

Количество хромосом в соматических клетках человека

Для начала необходимо определить, что означает термин «соматическая клетка». Этим понятием обозначают любые клетки человеческого организма, которые не относятся к половым. Они определяют основные параметры человеческого организма, такие как:

  • рост;
  • телосложение;
  • цвет волос;
  • цвет глаз.

Каждая соматическая клетка имеет в своем составе 22 пары хромосом, которые являются диплоидными (двойными). В результате несложных подсчетов можно установить, что всего в такой клетке 44 хромосомы (диплоидный набор). В результате развития генных мутаций общее количество хромосом в соматических клетках может увеличиваться или уменьшаться, что приводит к развитию хромосомного заболевания.

Количество хромосом в половых клетках человека

Половые хромосомы мужчины и женщины имеют отличия. У женщин это ХХ-хромосомы, а у представителей мужского пола – XY. Исследования генетиков показали, что Y-хромосома отличается отсутствием некоторых аллелей (к примеру, аллеля, отвечающего за свертываемость крови). Все половые клетки имеют гаплоидный набор.

Это означает, что каждая такая клетка содержит только 23 гаплоидные хромосомы (1n). В процессе слияния мужской и женской половых клеток образуется полный диплоидный набор. Это означает, что от каждого родителя будущий плод наследует по 23 хромосомы, которые вместе образуют затем диплоидный набор, необходимый для нормального образования зиготы.

хромосомы человека

Количество хромосом у мужчин и женщин

Даже знающие сколько хромосом у человека в организме содержится, думают, что между женским и мужским полом в этом плане имеются различия. Мужской и женский организмы содержат практически одинаковый набор хромосом, за небольшим исключением. Так, в клетках женского организма содержатся 23 одинаковые пары хромосом.

Все половые клетки содержат обе Х-хромосомы. У мужчин же 22 пары ХХ, а 23 – ХY. Непосредственно половые хромосомы обеспечивают различие в составе. В общем же количество хромосом у представителей обоих полов одинаковое – 46. Изменение этого количества является следствием мутации, которая приводит к развитию болезни.

Почему количество хромосом в клетке постоянно?

Число хромосом в клетке является определяющим фактором. Непосредственно от их количества зависит принадлежность живого организма к тому или иному виду. Известный факт, что дерево не может превратиться в овощ, овощ – в рыбу, а рыба – в гриб. Это невозможно благодаря тому, что все клетки организма на протяжении жизни организма имеют постоянный состав и неизменный набор хромосом.

Однако в отдельных случаях в составе половых клеток возможны изменения. Если хромосомы, в них содержащиеся, мутируют, наблюдаются проблемы с зачатием. В случае если оно происходит, плод с большой долей вероятности будет иметь врожденные аномалии развития или окажется нежизнеспособным и погибнет на одном из этапов своего развития. Зная сколько хромосом у здорового человека, генетики могут определить патологию путем анализа образца генетического материала.

Изменение структуры или количества хромосом

Изменение количества или структуры хромосом ведет к нарушению генетической информации, которую они несут. В большинстве случаев хромосомные изменения наследуются от родителей и возникают на этапе формирования половой клетки или при оплодотворении. Подобные изменения не поддаются контролю. Генетики выделяют два основных типа изменения хромосом:

  1. Нарушение числа хромосом – наблюдается увеличение или уменьшение числа копий одной из хромосом.
  2. Изменение структуры хромосом – происходит повреждение структуры или последовательности генетического материала. Появляется дополнительная часть или утрачивается имеющаяся.

Среди существующих типов изменения структуры хромосом выделяют:

  • транслокации – изменение последовательности генетического материала;
  • делеции – часть хромосомы утрачивается или становится короче;
  • дупликации – удвоение части хромосомы, что приводит к избытку генетического материала;
  • инсерции – вставка части хромосомы в другую, деление хромосом на части;
  • кольцевые хромосомы – когда концы хромосомы соединяются;
  • инверсии – часть хромосомы развернута, и гены в этом участке идут в обратном порядке.

Анеуплоидия у человека

Анеуплоидия – это хромосомная аномалия, при которой происходит увеличение или уменьшение числа хромосом. Существует несколько типов этой патологии:

  1. Нуллисомия – отсутствие в наборе хромосом одной из гомологичных хромосом. Эмбрионы с данной аномалией погибают внутриутробно.
  2. Моносомия – ситуация, при которой отсутствует одна хромосома из пары.

Полиплоидия у человека

Полиплоидия – это кратное увеличение хромосомных наборов в клетке. Соматические клетки содержат диплоидный набор, однако возможны и триплоидные (3n), тетраплоидные (4n). Полиплоиды с повторенным несколько раз одним и тем же набором хромосом называют аутополиплоидами, а полученные от скрещивания организмов, принадлежащих к различным видам, – аллопполиоидами. Большая роль данных хромосомных аномалий отмечается в растениеводстве. У человека патология наблюдается редко и практически несовместима с жизнью.

Источник