Какое из перечисленных свойств относится к функции y x cosx

Какое из перечисленных свойств относится к функции y x cosx thumbnail

Инфоурок

Математика
›Презентации›Функция у = cosx её свойства и график.

Описание презентации по отдельным слайдам:

1 слайд

Какое из перечисленных свойств относится к функции y x cosx

2 слайд

изучить функцию У = COS X выяснить ее свойства и вид графика; рассмотреть гео

Описание слайда:

изучить функцию У = COS X выяснить ее свойства и вид графика; рассмотреть геометрические преобразования функции косинус. ввести понятие числовой функции косинус;

3 слайд

Функция У = COS X определена на всей числовой прямой; множеством её значений

Описание слайда:

Функция У = COS X определена на всей числовой прямой; множеством её значений является отрезок [ -1; 1]; функция периодическая с периодом 2π; функция чётная, график симметричен относительно оси ОУ;

4 слайд

Функция У = COS X убывает на отрезке [ 0; π]. При повороте точки (1;0) Вокруг

Описание слайда:

Функция У = COS X убывает на отрезке [ 0; π]. При повороте точки (1;0) Вокруг начала координат против часовой стрелки на угол от 0 до π абсцисса точки, т.е. cos x, уменьшается от 1 до -1.

5 слайд

Какое из перечисленных свойств относится к функции y x cosx

6 слайд

т.к cos(-x) = cosx функция чётная, значит график симметричен относительно оси

Описание слайда:

т.к cos(-x) = cosx функция чётная, значит график симметричен относительно оси ОУ -1

7 слайд

Числовая функция, заданная формулой y=cos x, называется косинусом.

Описание слайда:

Числовая функция, заданная формулой y=cos x, называется косинусом.

8 слайд

Свойства функции y=cosx 1) D(cosx): (-∞;+∞) 2) E(cosx): [-1;1] 3) Функция чет

Описание слайда:

Свойства функции y=cosx 1) D(cosx): (-∞;+∞) 2) E(cosx): [-1;1] 3) Функция четная: cos(-x)=cosx. График функции симметричен оси y. 4) Периодическая: Т = 2П cosx = cos (x+2П)

9 слайд

Свойства функции y=cosx 5) Точки пересечения с осью х: (П/2+Пn;0) nЄZ 6) Точк

Описание слайда:

Свойства функции y=cosx 5) Точки пересечения с осью х: (П/2+Пn;0) nЄZ 6) Точки пересечения с осью у: (0;1) 7) Промежутки знакопостоянства: cosx>0:(-П/2+2Пn;П/2+2Пn) nЄZ cosx<0:(П/2+2Пn;3П/2+2Пn)nЄZ

10 слайд

Свойства функции y=cosx 8) Промежутки монотонности: [-П+2Пn;2Пn], nЄZ [2Пn;П+

Описание слайда:

Свойства функции y=cosx 8) Промежутки монотонности: [-П+2Пn;2Пn], nЄZ [2Пn;П+2Пn], nЄZ 9) Точки экстремума: x min =-П+2Пn; 10) Экстремумы функции: y min =-1; y max = 1 x max = 2Пn

11 слайд

 Преобразования графика y=cosx

Описание слайда:

Преобразования графика y=cosx

12 слайд

 y = - cos x график функции у =cos x отобразить симметрично относительно оси х

Описание слайда:

y = — cos x график функции у =cos x отобразить симметрично относительно оси х

13 слайд

у=Acos x график функции y=cos x 1) растянуть вдоль оси у, если /А/&gt;1; 2) сжат

Описание слайда:

у=Acos x график функции y=cos x 1) растянуть вдоль оси у, если /А/>1; 2) сжать вдоль оси у, если /А/<1. все значения у уменьшаются в 2 раза все значения у увеличиваются в 2 раза

14 слайд

у= cos (x+a) ось у сдвинуть на а ед.отрезков вправо y= cos (x+2n/3) y= cos (x

Описание слайда:

у= cos (x+a) ось у сдвинуть на а ед.отрезков вправо y= cos (x+2n/3) y= cos (x-a) ось у сдвинуть на а ед.отрезков влево y= cos (x-2n/3)

15 слайд

y = cos (x)+b ось х сдвинуть на b ед.отрезков вниз сдвинуть ось х на 2 ед. от

Описание слайда:

y = cos (x)+b ось х сдвинуть на b ед.отрезков вниз сдвинуть ось х на 2 ед. отр. вниз y = cos (x)-b ось х сдвинуть на b ед.отрезков вверх y=cos (x)-2 сдвинуть ось х на 2 ед. отр. вверх

16 слайд

y = cos (аx) сжать вдоль оси х, если a&gt;1 растянуть вдоль оси х, если a

Описание слайда:

y = cos (аx) сжать вдоль оси х, если a>1 растянуть вдоль оси х, если a<1 y = cos (2x) период: T=2П/2=П сжать вдоль оси х в 2 раза период:T=2П/0,5=4П растянуть вдоль оси х в 2 раза y = cos (0,5x)

Выберите книгу со скидкой:

Какое из перечисленных свойств относится к функции y x cosx

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА

Инфолавка — книжный магазин для педагогов и родителей от проекта «Инфоурок»

Какое из перечисленных свойств относится к функции y x cosx

Курс повышения квалификации

Какое из перечисленных свойств относится к функции y x cosx

Курс повышения квалификации

Какое из перечисленных свойств относится к функции y x cosx

Курс профессиональной переподготовки

Учитель математики и информатики

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Краткое описание документа:

Данная презентация выполнена по теме «Функция у=cosx её свойства и графики» и предназначена для учащихся 10-11 классов. Цель:  изучить функцию у = cosx её свойства и графики.Задачи: 1) ввести понятие числовой функции, 2) выяснить её свойства и вид графика, 3) рассмотреть геометрические преобразования функции косинус.  Презентация состоит из 16 слайдов и позволяет быстро подготовиться  учителю к уроку, а также наглядно продемонстрировать преобразования графиков и развить интерес у учащихся к выбранной теме.

Общая информация

Номер материала:

186000092745

Вам будут интересны эти курсы:

Оставьте свой комментарий

Источник

Теория

1. Свойства функции y = cosx и её график

Задания

1. Возрастание и убывание функции y = cosx

Сложность:
лёгкое

1

2. Сравнение чисел с использованием свойств функции y = cosx

Сложность:
лёгкое

2

3. Определение значений косинусов некоторых углов

Сложность:
лёгкое

1

4. Преобразование выражения cos t и определение его значения

Сложность:
лёгкое

1

5. Применение формул приведения к сравнению чисел

Сложность:
среднее

2

6. Построение графика функции y = cosx + b или y = cos(x + а)

Сложность:
среднее

1

7. Принадлежность точек графику функции y = k cos(x + a) + b

Сложность:
среднее

1

8. Нахождение наибольшего и наименьшего значений функции y = cosx

Сложность:
среднее

1

9. Область значений функции y = cosx

Сложность:
среднее

1

10. Определение чётности функции

Сложность:
среднее

1

11. Решение уравнения cosx = ax + b графически

Сложность:
сложное

1

12. Определение наибольшего и наименьшего значений функции

Сложность:
сложное

2

13. Построение графиков функций y = cos(x + a) + b

Сложность:
сложное

4

Тесты

1. Тренировка по теме Функции y = cosx

Сложность: лёгкое

4

Методические материалы

1. Технологическая карта
Читайте также:  Какие свойства фолиевой кислоты

Источник

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Теория

Конспект урока

Тригонометрические функции и их свойства

Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

— область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

— периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

Функция синус и ее график

Рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция нечетная ;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что  Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Функция косинус и ее график

Теперь рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция четная  Из этого следует симметричность графика функции относительно оси ординат;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что  С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Функция тангенс и ее график

Перейдем к функции:

Основные свойства этой функции:

1) Область определения  кроме , где . Мы уже указывали в предыдущих уроках, что  не существует. Это утверждение можно обобщить, учитывая период тангенса;

2) Область значений , т.е. значения тангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

5) Функция периодична с периодом 

Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на  вдоль оси абсцисс.

Читайте также:  Какие монеты лечебные свойства

Функция котангенс и ее график

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения  кроме , где . По таблице значений тригонометрических функций мы уже знаем, что  не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом 

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Вычисление периодов тригонометрических функций со сложным аргументом

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

Тригонометрические уравнения и методы их решения

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения. 

Запишем простейшее тригонометрическое уравнение:

Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут  и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

1)

2)

3)

4)

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует. 

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо  по очереди все целые числа.

Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

 и

.

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения  является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

1) Простейшие, например, ;

2) Частные случаи простейших уравнений, например, ;

3) Уравнения со сложным аргументом, например, ;

Читайте также:  Какие амины проявляют более основные свойства

4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя, например, ;

5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций, например, ;

6) Уравнения, сводящиеся к простейшим с помощью замены, например, ;

7) Однородные уравнения, например, ;

8) Уравнения, которые решаются с использованием свойств функций, например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

А также уравнения, которые решаются с использованием различных методов.

Системы тригонометрических уравнений и методы их решения

Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

Наиболее часто встречаются системы следующих типов:

1) В которых одно из уравнений степенное, например, ;

2) Системы из простейших тригонометрических уравнений, например, .

На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

Вставка 1. Решение частных случаев простейших тригонометрических уравнений.

Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

 и

 

имеют более простые решения, чем дают формулы общих решений.

Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

 
 

Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла  попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

Для этого необходимо к уже отложенному углу добавить развернутый угол . Второй угол, который является решением уравнения, равен . Но нельзя забывать, что это еще не все, т.к. мы можем построить угол больший полного круга, и он еще раз попадет в первую точку и также будет решением нашего уравнения. Для этого необходимо прибавить ко второму вычисленному углу еще раз , и получим значение . Продолжать эти действия можно бесконечное количество раз.

Если выписать первые три полученных нами корня уравнения, то можно увидеть закономерность:

, , , …и выписать формулу для всех корней:

Как видим, эта формула действительно выглядит проще общего решения уравнения с косинусом, хотя бы потому, что в ней отсутствует «». Однако это не значит, что общая формула даст неверное решение.

Аналогично можно получить решения для всех остальных указанных частных случаев тригонометрических уравнений.

Полезные ссылки:

1)  Алгебра 9 класс: «Функция y=sinx, её свойства и график» 

2)  Алгебра 9 класс: «Функция y=cosx. Её свойства и график» 

3)  Алгебра 9 класс: «Функция y=cos t, её свойства и график» 

4)  Алгебра 9 класс: «Простейшие тригонометрические уравнения и сопутствующие задачи» 

5)  Алгебра 9 класс: «Элементы теории тригонометрических функций. Функция y=sinx» 

6)  Алгебра 9 класс: «Элементы теории тригонометрических функций. Функция y=cosx» 

7)  Алгебра 10 класс: «Функция y=sinx, ее основные свойства и график» 

8)  Алгебра 10 класс: «Функция y=sinx, её свойства, график и типовые задачи» 

9)  Алгебра 10 класс: «Функция y=cos t, её основные свойства и график» 

10) Алгебра 10 класс: «Функция y=cos t, её свойства, график и типовые задачи» 

11) Алгебра 10 класс: «Периодичность функций y=sin t, y=cos t» 

12) Алгебра 10 класс: «Как построить график функции y=m*f(x), если известен график функции y=f(x)» 

13) Алгебра 10 класс: «Как построить график функции y=f(kx), если известен график функции y=f(x)» 

14) Алгебра 10 класс: «Как построить график функции y=f(kx), если известен график функции y=f(x). Примеры построения» 

15) Алгебра 10 класс: «График гармонического колебания» 

16) Алгебра 10 класс: «Функция y=tgx, ее свойства и график» 

17) Алгебра 10 класс: «Функция y=сtgx, ее свойства и график» 

18) Алгебра 10 класс: «Первые представления о решении тригонометрических уравнений» 

19) Алгебра 10 класс: «Простейшие тригонометрические уравнения» 

Источник