Какое из перечисленных ниже свойств волн не является общим свойством волн любой природы

А4. Какие изменения отмечает человек в звуке при увеличении частоты колебаний в звуковой волне?
1) Повышение высоты тона
2) Понижение высоты тона
3) Увеличение громкости
4) Уменьшение громкости
А5. Расстояния от двух когерентных источников волн до точки М равны а и b. Разность фаз колебаний источников равна нулю, длина волны равна l. Если излучает только один источник волн, то амплитуда колебаний частиц среды в точке М равна А1, если только второй, то – А2. Если разность хода волн a – b =3l/2 , то в точке М амплитуда суммарного колебания частиц среды
1) равна нулю 2) равна | А1 – А2| 3) равна | А1 + А2|
4) меняется со временем периодически
А6. Выберите правильное утверждение.
А. Опираясь на эксперименты Фарадея по исследованию электромагнитной индукции, Максвелл теоретически предсказал существование электромагнитных волн.
В. Опираясь на теоретические предсказания Максвелла, Герц обнаружил электромагнитные волны экспериментально.
С. Опираясь на эксперименты Герца по исследованию электромагнитных волн, Максвелл создал теорию их распространения в вакууме.
1) Только А и В 2) Только А и С 3) Только В и С 4) И А, и В, и С
А7. Какое утверждение верно?
В теории электромагнитного поля Максвелла
А – переменное электрическое поле порождает вихревое магнитное поле
Б – переменное магнитное поле порождает вихревое электрическое поле
1) Только А 2) Только Б 3) И А, и Б 4) Ни А, ни Б
А8. В одной научной лаборатории для ускорения заряженных частиц используется линейный ускоритель, а во второй – циклотрон, в котором частицы разгоняются, двигаясь по спиралевидной траектории. В какой из лабораторий следует учесть возможность возникновения опасных для человека электромагнитных излучений.
1) Только в первой 2) Только во второй 3) В обеих лабораториях
4) Ни в одной из лабораторий
А9. Какое утверждение правильное?
Излучение электромагнитных волн происходит при
А – движении электрона в линейном ускорителе
Б – колебательном движении электронов в антенне
1) Только А 2) Только Б 3) И А, и Б 4) Ни А, ни Б
А10. Заряженная частица не излучает электромагнитные волны в вакууме
1) равномерном прямолинейном движении
2) равномерном движении по окружности
3) колебательном движении
4) любом движении с ускорением
А11. Скорость распространения электромагнитных волн
1) имеет максимальное значение в вакууме
2) имеет максимальное значение в диэлектриках
3) имеет максимальное значение в металлах
4) одинакова в любых средах
А12. В первых экспериментах по изучению распространения электромагнитных волн в воздухе были измерены длина волны см и частота излучения МГц. На основе этих неточных экспериментов было получено значение скорости света в воздухе, равное примерно
1) 100000 км/с 2) 200000 км/с 3) 250000 км/с 4) 300000 км/с
А13. Колебания электрического поля в электромагнитной волне описываются уравнением : Е=10sin(107t). Определите частоту колебаний (в Гц).
1) 107 2) 1,6 *106 3)(107 t) 4) 10
А14. При распространении электромагнитной волны в вакууме
1) происходит только перенос энергии
2) происходит только перенос импульса
3) происходит перенос и энергии, и импульса
4) не происходит переноса ни энергии, ни импульса
А15. При прохождении электромагнитной волны в воздухе происходят колебания
1) молекул воздуха
2) плотности воздуха
3) напряжённости электрического и индукции магнитного полей
4) концентрации кислорода
А16. Явлением, доказывающим, что в электромагнитной волне вектор напряжённости электрического поля колеблется в направлении, перпендикулярном направлению распространению электромагнитной волны, является
1) интерференция 2) отражение 3) поляризация 4) дифракция
А17. Укажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе волны из воздуха в стекло
1) скорость и длина волны 2) частота и скорость
3) длина волны и частота 4) амплитуда и частота
А18. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природы?
1) интерференция 2) преломление 3) поляризация 4) дифракция
А19. На какую длину волны нужно настроить радиоприемник, чтобы слушать радиостанцию «Европа+», которая вещает на частоте 106,2 МГц?
1) 2,825 дм 2) 2,825 см 3) 2,825 км 4) 2,825 м
А20. Амплитудная модуляция высокочастотных электромагнитных колебаний в радиопередатчике используется для
1) увеличения мощности радиостанции
2) изменения амплитуды высокочастотных колебаний
3) изменения амплитуды колебаний звуковой частоты
4) задания определенной частоты излучения данной радиостанции
- Главная
- Вопросы & Ответы
- Вопрос 200061
Гость:
8 лет назад
58
1
Лучший ответ:
Гость:
для электромагнитных волн характерно явление а) поляризация
8 лет назад
Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):
Лучшее из галереи:
Другие вопросы:
Гость:
не производя расчёта, укажите, в каком из оксидов, формулы которых Fe2O3 и Fe3O4, содержание железа выше. Ответ подтвердите расчетами.
8 лет назад
Смотреть ответ
51
1
Гость:
1 доля-44,4 миллиграмма, и 1 золотник- 4,27 грамма. Во сколько раз отличаются эти единицы массы? скажите решение!)
8 лет назад
Смотреть ответ
6
1
Гость:
1. При прохождении электромагнитных волн в воздухе происходят колебани: а) молекул воздуха б) плотность воздуха в) напряженности электрического и индукции магнитного полей г) концентрации кислорода2. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природ…
8 лет назад
Смотреть ответ
13
1
Гость:
Какой народ придумал шахматы и цифры, которые мы называем арабскими?
8 лет назад
Смотреть ответ
5
1
Гость:
На чём писали в Египте,Двуречье,Индии и Китае?
8 лет назад
Смотреть ответ
4
1
Естествознание
10 класс
Бросая в воду камешки, смотри на
круги, ими образуемые, иначе такое
бросание будет пустою забавою
Козьма Прутков
Какие свойства обнаруживают волны? Какие свойства являются общими для волн и частиц?
Урок-лекция
Последуем совету Козьмы Пруткова и будем наблюдать за волнами, пытаясь разобраться в их природе и свойствах.
ФОРМА ВОЛН. Из двух примеров волн, приведенных в предыдущей параграфе, колебания которых можно увидеть, следует, что форма волн может сильно различаться. Волна от брошенного в воду камня имеет форму расширяющихся кругов. Волна в натянутой веревке — изгиб, движущийся вдоль веревки. О том, насколько разнообразна форма волн, можно судить по волнам на море или большом озере. Оказывается, что и форма невидимых волн может тоже быть самой разнообразной. Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.
Волны могут иметь самую разнообразную форму, которая может изменяться по мере распространения волны.
ПРИНЦИП СУПЕРПОЗИЦИИ ВОЛН. Бросим теперь в воду два камня. Мы увидим, что по мере распространения волны проходят одна через другую, складываясь. В тех местах, где каждая из волн имеет горб, поверхность воды поднимется на высоту, равную сумме высот каждого из горбов. То же самое можно заметить для точек, в которых обе волны имеют впадины. Если же в какой-то точке одна волна имела горб, а другая — впадину, то, складываясь, волны гасят друг друга. Явление взаимоусиления или взаимогашения двух или более волн называют интерференцией.
Наблюдая за распространением волн от двух камней, несложно заметить, что на большом расстоянии от камней уже нельзя увидеть две волны. Что же произошло — две волны превратились в одну? Но в какой момент это происходит? Правильнее и проще считать. что в момент падения камней образовалась одна волна, равная сумме двух волн, которая изменяла форму по мере распространения, т. е. при сложении двух или более волн образуется новая волна. Это правило называется принципом суперпозиции волн.
Сложение нескольких волн приводит к образованию новой волны. Любую волну можно представить как сумму нескольких волн, причем это можно сделать многими способами.
МОНОХРОМАТИЧЕСКИЕ ВОЛНЫ. Составление из нескольких волн одной новой напоминает детскую игрушку, в которой из деталей разнообразной формы нужно составить исходную картинку. А как подобрать универсальные элементы, чтобы из них можно было составить любую картинку? Наверное, вы знаете ответ. Любое изображение на экране телевизора или на листе бумаги формируется из множества цветных точек — «элементарных кирпичиков» изображения. Точно так же вещество состоит из таких «элементарных кирпичиков», как атомы, молекулы, ядра, электроны. Может быть, такие «элементарные кирпичики» существуют и в «мире волн»? Это действительно так: любую волну можно однозначно представить в виде суммы монохроматических волн.
На рисунке 67 приведены графики зависимости давления в звуковой волне от координаты X, вдоль которой распространяется волна, и от времени.
Рис. 67. График зависимости давления в звуковой монохроматической волне от расстояния в некоторый момент t0 (а) и в некоторый последующий момент времени t0 + Δt (б). График зависимости той же волны от времени в некоторой точке пространства (в)
Монохроматической волной называют волну, изменяющуюся во времени и в пространстве по синусоидальному закону.
«Монохроматическая» в дословном переводе означает «одноцветная». Какое отношение имеет цвет к звуковой волне? Как уже говорилось, свет представляет собой электромагнитную волну. При разложении света призмой (см. рис. 19) каждой узкой одноцветной полоске, например полоске в спектре натрия (см. рис. 20), соответствует волна, близкая к синусоидальной. В данном случае одноцветная волна имеет явный смысл. Эта терминология была перенесена на волны другой природы.
На рисунке 67 приведены также некоторые параметры, характеризующие монохроматическую волну. Периодом волны T называют время, за которое происходит одно колебание (измеряется в секундах). Длиной волны λ, называют пространственный интервал, соответствующий одному периоду волны. Помимо этого, вводят понятие «частота волны» v = 1/T — число колебаний волны в одну секунду (измеряется в герцах). Эти параметры связаны со скоростью распространения волны и соотношением V = λv. Амплитудой волны (на рисунке она обозначена через А. однако для разных типов волн могут применяться различные обозначения) называется максимальное отклонение параметра, характеризующего волну, от положения равновесия.
Монохроматические (синусоидальные) волны представляют собой «элементарные кирпичики», при сложении которых можно получить любую волну. Для этих волн определяются такие параметры, как длина волны, период волны, частота волны, амплитуда волны.
Разложение произвольной волны на монохроматические составляющие называют спектральным представлением волны. Совокупность частот (или длин) монохроматических волн, составляющих некоторую волну, и определяет спектр волны. Призма является одним из простейших приборов, осуществляющим разложение электромагнитной волны видимого диапазона.
Монохроматические волны обладают рядом замечательных свойств. В частности, при распространении монохроматической волны ее форма не изменяется.
Следует заметить, что, строго говоря, синусоида монохроматической волны бесконечна во времени и в пространстве. Монохроматическая волна, таким образом, является идеализацией, такой же, как, например, материальная точка. В природе не бывает монохроматических волн, однако многие волны по свойствам очень близки к монохроматическим.
ДИФРАКЦИЯ ВОЛН. Если вы внимательно наблюдали за рябью на поверхности воды, то могли заметить, что мелкие предметы (торчащие из воды ветки, небольшие камни) не являются препятствиями для волн. Волны практически «не замечают» их. Однако за препятствием с большими размерами (например, плавающий в воде плот) волны исчезают. Вывод, который можно сделать, оказывается справедлив для волн любой природы: волны свободно огибают препятствия, размеры которых сравнимы или меньше длины волны. Такое явление называют дифракцией.
Дифракцией называют явление огибания препятствий волнами различной природы. Волны любой природы свободно огибают препятствия с размерами, сравнимыми или меньшими длины волны.
Именно дифракция не дает возможности увидеть атомы и молекулы в микроскоп со сколь угодно большим увеличением. Размеры атомов и молекул много меньше длины волны видимого света.
ОБЩИЕ СВОЙСТВА ВОЛН И ЧАСТИЦ. Такой объект природы, как волны, совсем не похож на частицы, а «элементарные кирпичики», из которых можно составить любую волну, бесконечны в пространстве и во времени. Тем не менее у волн и частиц есть общие свойства. Начнем с примера. Бросив камень в окно, можно разбить стекло. Но, как вы, наверное, знаете, оконные стекла разбиваются и при взрывах, в результате которых образуется ударная звуковая волна (см. рис. 66). Следовательно, такая волна действует с некоторой силой на стекло. Какими должны быть свойства брошенного камня, чтобы он разбил стекло? У него должна быть достаточно большая масса и достаточно большая скорость. Как вы знаете, произведение этих двух величин дает импульс тела, т. е. камень разобьет стекло при достаточно большом импульсе. Из аналогии между камнем и ударной волной можно сделать вывод, что волна обладает импульсом и переносит импульс через пространство. Это свойство характерно для волн любой природы.
Помимо импульса, волны обладают энергией и переносят энергию через пространство. То, что электромагнитная волна, приходящая к нам от Солнца, снабжает нас энергией, необходимой для жизни, вы, конечно, знаете. Однако энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.
Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство
- Что общего у волн и частиц?
- Приведите примеры приборов, отличных от призмы, разлагающих волну в спектр.
- Проведите простейший эксперимент: направьте луч солнца, отраженный от компакт-диска, на белый экран. Что вы наблюдаете? Как объяснить результат наблюдения?
Вариант 1.
1.Каким должен быть угол падения светового луча, чтобы отраженный луч составлял с падающим угол 500?
1) 200 2) 500 3) 250
2. При переходе луча света из первой среды во вторую угол падения равен 600, а угол преломления 300. Каков относительный показатель преломления второй среды по отношению к первой?
1) 2 2) 3) 0,5
3. Считается, что при распространении света в вакууме в виде электромагнитной волны в пространстве распространяются:
1) только колебания напряженности электрического поля;
2) только колебания индукции магнитного поля;
3) колебания напряженности электрического поля и индукции магнитного поля;
4) колебания невидимой среды – эфира.
4. Расположите в порядке возрастания длины волны электромагнитные излучения разной природы:
инфракрасное излучение Солнца;
рентгеновское излучение;
излучение СВЧ – печей;
ультрафиолетовое излучение.
1) I, II, III, IV 2) II, I, IV, III 3) III, II, I, IV 4) II, IV, I, III
5. Свет распространяется из воздуха в стекло, преломляясь на границе раздела этих сред. На каком рисунке правильно представлены падающий и преломленный лучи?
2) 3) 4)
6. Какое из перечисленных ниже свойств является специфическим для электромагнитных волн, не являясь общим свойством волн любой природы?
1) интерференция;
2) дифракция;
3) преломление;
4) поляризация.
7. Дифракционная решетка с периодом d освещается нормально падающим световым пучком с длиной волны λ. Какое из приведенных ниже выражений определяет угол α, под которым наблюдается второй главный максимум?
1) sin α= 2) sin α= 3) cos α= d???? 4) cos α=
8. Тонкая пленка масла на поверхности лужи может выглядеть окрашенной в разные цвета. Окраска пленки объясняется:
1) поляризацией света в пленке;
2) дифракцией света в пленке;
3) дисперсией света в пленке;
4) интерференцией света в пленке.
9. Свет переходит из воздуха в стекло с показателем преломления n. Какое из следующих утверждений справедливо?
1) частота и скорость света уменьшились в n раз;
2) частота и скорость света увеличились в n раз;
3) частота не изменилась, а скорость света уменьшилась в n раз;
4)частота не изменилась, а скорость света увеличилась в n раз.
Вариант 2.
1. Как изменится угол между падающим и отраженным лучами света, если угол падения уменьшится на 100?
1) уменьшится на 50;
2) уменьшится на 200;
3) увеличится на 100.
2. При переходе луча света из первой среды во вторую угол падения равен 300, а угол преломления 600. Каков относительный показатель преломления второй среды по отношению к первой?
1) 2 2) 3)
3. Скорость света в стекле с показателем преломления n=1,5 примерно равна
1) 200000 м/с 2) 200000 км/с 3) 300000 км/с 4) 450000 км/с
4. В некотором спектральном диапазоне угол преломления лучей на границе воздух – стекло падает с увеличением частоты излучения. Ход лучей для трех основных цветов при падении белого света из воздуха на границу раздела показан на рисунке. Цифрам соответствуют цвета
3
2 1
1 –красный 2) 1 – синий 3) 1 – красный 4) 1 – синий
2 – зеленый 2 – красный 2 – синий 2 – зеленый
3 – синий 3 – зеленый 3 – зеленый 3 – красный
5. Ученик выполнил задание: «Нарисовать ход луча света, падающего из воздуха перпендикулярно поверхности стеклянной призмы треугольного сечения» (см. рисунок). При построении он:
1) ошибся при изображении хода луча только при переходе из воздуха в стекло;
2) правильно изобразил ход луча на обеих границах раздела сред;
3) ошибся при изображении хода луча на обеих границах раздела сред;
4) ошибся при изображении хода луча только при переходе из стекла в воздух.
6. Если за непрозрачным диском, освещенным ярким источником света небольшого размера, поставить фотопленку, исключив попадание на нее отраженных от стен комнаты лучей, то при проявлении ее после большой выдержки в центре тени можно обнаружить светлое пятно. Какое физическое явление при этом наблюдается?
1) дифракция;
2) преломление;
3) дисперсия;
4) поляризация.
7. Дифракционная решетка с периодом d освещается нормально падающим световым пучком с длиной волны λ. Какое из приведенных ниже выражений определяет угол α, под которым наблюдается первый главный максимум?
1) sin α= 2) sin α= 3) cos α=
8. Поляризация света доказывает, что свет – это:
1) поток заряженных частиц;
2) поток электронейтральных частиц;
3) поперечная волна;
4) продольная волна.
9. Свет переходит из воздуха в стекло с показателем преломления n. Какое из следующих утверждений справедливо?
1) длина световой волны и скорость света уменьшились в n раз;
2) длина световой волны и скорость света увеличились в n раз;
3) длина световой волны не изменилась, а скорость света уменьшилась в n раз;
4) длина световой волны не изменилась, а скорость света увеличилась в n раз.