Какое из перечисленных ниже физических свойств кристалла зависит от

Какое из перечисленных ниже физических свойств кристалла зависит от thumbnail
Вариант 3

1. Как изменяется внутренняя энергия идеального газа при адиабатическом сжатии?
А. ∆U = 0. Б. ∆U >0. В. ∆U <0. Г. ∆U может иметь любое значение. Д. Внутренняя энергия идеального газа всегда равна нулю.

2. В каком процессе количество теплоты, переданное газу, равно работе, совершенной газом?
А. В изохорном. Б. В изобарном. В. В адиабатном. Г. В изотермическом. Д. Среди ответов А—Г нет правильного.

3. Газу передано количество теплоты 300 Дж, при этом он совершил работу 100 Дж. Чему равно изменение внутренней энергии газа?
А. 400 Дж. Б. 300 Дж. В. 200 Дж. Г. 100 Дж. Д. 0 Дж.

4. Чему равна работа, совершенная газом при переходе из состояния 1 в состояние 2 (рис. 1)?
Какое из перечисленных ниже физических свойств кристалла зависит от
А. 0 Дж. Б. 2000 Дж. В. 4000 Дж. Г. 6000 Дж. Д. Среди ответов А—Г нет правильного.

5. Тепловая машина за цикл от нагревателя получает количество теплоты 100 Дж и отдает холодильнику 75 Дж. Чему равен КПД машины?
А. 75%. Б. -43%. В. -33%. Г. 25%. Д. Среди ответов А—Г нет правильного.

6. Какой из графиков (рис. 2) выражает зависимость давления от температуры для ненасыщенного пара?
Какое из перечисленных ниже физических свойств кристалла зависит от
А. 1. Б. 2. В. 3. Г. 4. Д. 5.

7. В цилиндре, герметически закрытом поршнем, находятся вода и насыщенный водяной пар. Как изменится давление в цилиндре, если перемещением поршня объем увеличивается, а температура поддерживается постоянной?
А. Увеличится. Б. Останется неизменным. В. Уменьшится. Г. Может остаться неизменным или уменьшится. Д. Может остаться неизменным или увеличится.

8. Температура кипения воды в открытом сосуде равна 95° С. Какой причиной это может быть вызвано?
А. Атмосферное давление ниже нормального. Б. Атмосферное давление выше нормального. В. Нагревание воды было очень быстрым. Г. Нагревание воды было очень медленным. Д. Ни одна из причин А—Г не могла вызвать понижения температуры кипения.

9. Относительная влажность воздуха в комнате равна 50%. Какое соотношение из приведенных ниже выполняется для показаний сухого Т1 и влажного Т2 термометров?
А. Т1 > Т2 Б. Т1 < Т2 В. Т1 = Т2. Г. Возможны все случаи: Т1 > Т2, Т1 < Т2, Т1 = Т2. Д. Среди ответов А—Г нет правильного.

10. Какое из перечисленных ниже свойств является обязательным признаком любого аморфного тела?
А. Пластичность. Б. Прозрачность. В. Анизотропность. Г. Изотропность. Д. Среди ответов А—Г нет правильного.

11. Внутренняя энергия макроскопических тел зависит …
A. Только от температуры. Б. От температуры и объема. B. Только от объема. Г. От потенциальной и кинетической энергии тела.

12. В процессе нагревания вещество из твердого состояния переходит в жидкое, а затем в газообразное. На рисунке 4 представлен график зависимости температуры вещества от времени при условии постоянного теплообмена Какой участок графика соответствует процессу кипения жидкости?
Какое из перечисленных ниже физических свойств кристалла зависит от
А. 1—2. Б. 2—3. В. 3—4. Г. 4—5. Д. 5—6.

13. Переход газа из состояния М в состояние N совершается различными способами: 1, 2, 3, 4 (рис. 5). При каком способе работа газа имеет минимальное значение?
Какое из перечисленных ниже физических свойств кристалла зависит от
А. 1. Б. 2. В. 3. Г. 4. Д. При всех способах одинаково.

14. При изотермическом сжатии газа его внутренняя энергия…
A. Увеличивается, так как увеличивается кинетическая энергия молекул газа. Б. Уменьшается, так как уменьшается объем газа. B. Увеличивается, так как увеличивается потенциальная энергия молекул газа.
Г. Не изменяется, так как не изменяется температура газа.

15. Температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром, — это …
A. Температура кипения. Б. Температура парообразования. B. Критическая температура. Г. Температура, при которой происходит испарение.

Источник

Всем специалистам в области кристаллографии или физики твердого тела совершенно ясно, что в случае кристалла мы имеем дело с упорядоченным расположением в пространстве атомов или ионов. В некоторых случаях, например в кристаллах льда или отвержденных газов, речь может идти о молекулах. Для краткости далее будем говорить только об атомах, в том числе ионизированных (ионах), если не оговаривается что-нибудь другое.

Итак, кристалл — это упорядоченная в пространстве система атомов. Они расположены правильным образом и чаще всего так, чтобы максимально плотно заполнить объем пространства. Попытавшись расположить вплотную друг к другу стальные шарики от шарикоподшипника, мы получим вполне приличную модель кристаллического строения и быстро убедимся, что число способов, которыми можно разместить шарики, ограничено. В зависимости от того, как расположены относительно друг друга атомные ряды и атомные плоскости, могут быть получены разные типы кристаллов. В свою очередь тип расположения атомов определяется их взаимодействием между собой, природой связи между частицами.

Читайте также:  Наиболее ярко выраженные металлические свойства у какого элемента

Аккуратное разламывание кристаллов приводит к появлению необычных структур с интересными свойствами. Сначала появляются крупные области с положительным или отрицательным поверхностным зарядом, создающие мощное электрическое поле, а затем они переходят в лабиринты шириной всего в несколько атомов.

Многие свойства ионных кристаллов обусловлены их структурой на атомарном масштабе: положительно и отрицательно заряженные атомы притягиваются друг к другу и образуют прочную периодическую решетку. Однако на поверхности кристалла заряды должны быть скомпенсированы. «Если расщепить кристалл с кубической решеткой вдоль определенных направлений, то можно получить заряды только одного типа, — поясняет один из авторов работы Ульрих Дибольд из Венского университета. — Такая конфигурация крайне нестабильна». Потенциально такой слой мог бы на крошечном образце создавать поле с напряжением в миллионы вольт. Такую ситуацию ученые называют «поляризационной катастрофой».

В новом исследовании физики пытались понять, как именно атомы реорганизуются, чтобы не допустить поляризационной катастрофы. «Поверхность может по-разному измениться в ответ на разлом, — говорит первый автор статьи Мартин Сетвин. — Электроны могут начать накапливаться в определенных местах, кристаллическая решетка может исказиться или молекулы из воздуха могут налипнуть на поверхность, меняя ее свойства».

Ученые раскалывали кристаллы танталата калия KTaO3 при низких температурах и получали сколы, при которых половина атомов из слоя с одинаковыми зарядами оставалось на одном обломке, а вторая — на другом. Области с ионами одинакового заряда формировали «островки», хотя в среднем поверхность оказывалась нейтральной. «Тем не менее, островки достаточно велики, поэтому поляризационной катастрофы не удается полностью избежать — создаваемое ими поле настолько велико, что оно меняет свойства нижележащих слоев», — рассказал Сетвин.

При небольшом повышении температуры островки распались на лабиринт из ломаных линий, причем его «стены» были высотой всего в один атом и шириной в 4-5 атомов.

«Лабиритнообразные структуры не только прекрасны, но и потенциально полезны, — подытожил Дибольд. — Этот как раз то, что нужно — сильные электрические поля на атомном масштабе». Одним из возможных применений авторы называют проведение химических реакций, которые не проходят в других условиях, например, расщепление воды для получения водорода.

Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.

Анизотропность

Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

Однородность

Выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.

Читайте также:  Какое свойство рычага помогает

Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.

Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Прочность кристаллов

Проблема прочности кристаллов была и остается одной из самых важных в современных технике. Дело в том, что широко используемые конструкционные материалы в большей части представляют собой сплавы железа (сталь), алюминия (силумин, дюралюминий), меди (латунь, бронза) и некоторых других металлов, и все они имеют кристаллическое строение. В случае металлов мы редко имеем дело с такими правильными и красивыми кристаллами, о которых шла речь раньше. Металлические сплавы имеют так называемое поликристаллическое строение, то есть состоят из отдельных зерен — кристаллов, несколько развернутых друг относительно друга.

Шаг за шагом человек переходил от менее прочного материала к более прочному, это вело к совершенствованию всей используемой техники и расширению ее возможностей. Сейчас в борьбе за прочность счет идет уже только на проценты; из технических материалов выжато практически все, что можно, и каждый последующий шаг дается со все большим трудом.

Лет двадцать назад казалось, что если научиться выращивать бездефектные кристаллы большого размера, то проблема прочности будет полностью решена, а расход металла в сотни раз сократится. К сожалению, эти надежды не сбылись. Вырастить идеальный кристалл большого размера или очень дорого, или невозможно. Только в таких областях, как радиоэлектроника, это можно себе позволить. Например, полупроводниковые кристаллы Ge и Si выращиваются практически бездефектными. Такими же являются и рубиновые кристаллы для лазеров. Что же касается конструкционных материалов, то здесь пока приходится достигать высоких значений прочности, идя традиционным путем.

И еще одно важное заключение. Оказывается, что многие физические свойства кристаллов, в первую очередь их прочность, определяются не идеальной кристаллической решеткой, а отклонениями от идеальности — дефектной структурой. Умелое использование таких пороков кристалла позволяет управлять его свойствами и приспосабливать их к разнообразным требованиям современной техники. Для физика или инженера дефекты являются очень важной составной частью кристалла, без которой он практически не может существовать. Но тема дефектов в кристаллах заслуживает более глубокого и всестороннего обсуждения, чем то, которое возможно в этой статье.

[источники]
Источники:
https://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html
https://indicator.ru/news/2018/02/02/labirinty-na-skolah-kristallov/?utm_source=indivk&utm_medium=social&utm_campaign=eta-zamyslovataya-struktura—ne-rezulta
https://biofile.ru/geo/3307.html

Это копия статьи, находящейся по адресу https://masterokblog.ru/?p=2285.

Источник

В школьном курсе физики и химии обычно рассказывают о трёх агрегатных состояниях вещества — жидком, твёрдом и газообразном. Но для ряда веществ существует четвертое агрегатное состояние — нечто среднее между жидким и твердым, которое называют жидкокристаллическим.

В чем принципиальные отличия между жидкостью и кристаллом?

Жидкости обладают подвижностью, текучестью и изотропией свойств.

Что значит «изотропия свойств«? Рассмотрим на примере явления преломления света. Известно, что скорость распространения света зависит от среды, в которой он распространяется. Самой высокой скорость распространения будет в вакууме. При прохождении света через жидкости скорость снижается. Это снижение скорости зависит от природы вещества и характеризуется коэффициентом преломления. Причем в каком бы направлении относительно жидкости мы ни направляли луч света, коэффициент преломления будет одинаковым. Вещества, у которых измеряемые физические свойства не зависят от направления, называют изотропными.

Кристаллы — твёрдые вещества, обладающие внутренней упорядоченностью и анизотропией свойств.

Внутренняя упорядоченность кристаллов обуславливается наличием кристаллической решетки, которая отражает строгую повторяемость структурных частиц кристалла. Строение кристаллов подчиняется законам симметрии, чего нет в жидкостях и газах. Благодаря наличию кристаллической решетки кристаллы являются анизотропными средами. Если располагать кристалл под разными углами относительно падающего на него луча света и измерять коэффициент преломления, то он будет меняться в зависимости от положения кристалла.

Эксперимент, иллюстрирующий зависимость скорости распространения света в кристалле в зависимости от его ориентации относительно луча.

Читайте также:  Какие свойства у фосфора

Известно, что если нагревать твердое вещество, оно начнет плавиться и перейдет в жидкость. Более ста лет назад австрийский ботаник Ф. Рейнитцер заметил интересную вещь. Он нагревал кристаллический эфир холестерилбензоат, который при 145 °С плавился с образованием мутной жидкости, а она при достижении 179 °С превращалась в прозрачную жидкость. Момент перехода мутной жидкости в прозрачную назвали точкой просветления.

Самое удивительное, что в ходе дальнейших исследований было установлено: мутная жидкость является анизотропной! Получается, что эта жидкость обладала свойствами кристаллов. Именно поэтому такое состояние было названо жидкокристаллическим.

Вещества, способные в определенном температурном интервале выше точки плавления сочетать одновременно свойства жидкостей (текучесть, способность к образованию капель) и свойства кристаллических тел (анизотропию, упорядоченность), стали называть жидкими кристаллами или жидкокристаллическими.

Также жидкие кристаллы часто называют мезоморфными веществами, а фазу, которая существует между точкой плавления и точкой просветления, — мезо-фазой.

Если жидкость анизотропна, значит её внутреннее строение каким то образом упорядочено. Но как может совмещаться упорядоченность и текучесть? Ведь для того, чтобы свободно перемещаться молекулы жидкости должны разрывать связи с соседними молекулами, менять свое положение, то есть — нарушать порядок! Необходимо разобраться, как устроены жидкие кристаллы.

Агрегатные состояния вещества.

На самом деле, не все вещества могут образовывать жидкокристаллическую фазу. Эта особенность присуща только веществам, молекулы которых имеют асимметричную форму. Например, молекула того же самого холестерилбензоата имеет вытянутую вдоль одной оси асимметричную форму:

Холестерилбензоат.

В зависимости от формы молекул жидкие кристаллы делят на: каламитики (стержнеобразные молекулы, как холестерилбензоат), дискотики (дискообразные молекулы) и санидики (планкообразные молекулы).

Классификация жидких кристаллов по форме молекул (мезогенов).

В кристаллах присутствует трансляционная симметрия. На рисунке ниже красные вектора a и b как раз и являются трансляциями, которые показывают направление и расстояние, через которое будет периодически встречаться определенным образом ориентированная молекула. То есть в кристалле наряду с трансляционным порядком существует еще и ориентационный порядок.

Взаимное расположение молекул в кристалле и жидком кристалле. а и b — трансляции, d — директор.

При нагревании кристалла происходит его переход в жидкокристаллическую фазу, и сначала теряется ориентационный порядок; молекулы приобретают достаточную энергию, чтобы начать менять свою ориентацию. При этом молекулы самоорганизуются таким образом, что их наклон становится одинаковым — это энергетически выгодно.

Вектор, указывающий выделенное направление, по которому ориентированы молекулы-мезогены, называют директором.

На рисунке он изображен черными стрелками.

Если повышать температуру медленно, то после потери ориентационного порядка центры тяжести молекул сначала будут оставаться неизменными — трансляционная симметрия еще не потерялась. Такую мезо-фазу называют смектической-С фазой. При дальнейшем нагревании теряется и трансляционный порядок — молекулы покидают свои центры тяжести. Такую фазу называют нематической. Однако не смотря на потерю симметрии, во всех жидкокристаллических фазах остается единая ориентация мезогенов. Директор не пропадает.

Жидкие кристаллы, которые получают нагреванием кристаллов или охлаждением жидкостей, называют термотропными (образуются за счет изменения температуры). Остановимся немного на том, какие термотропные мезо-фазы встречаются.

Основные типы расположения стержнеобразных молекул в смектиках, нематиках и холестериках (Шибаев В.П. Необычные кристаллы или загадочные жидкости. Соросовский образовательный журнал, №11, 1996).

Смектики — самые упорядоченные жидкие кристаллы. Молекулы располагаются слоями и имеют подвижность в пределах каждого слоя. В нематических кристаллах центры тяжести молекул расположены хаотично (трансляционная симметрия отсутствует). Третий тип мезо-фаз — холестерический — самый сложно организованный. Он представляет собой нематические слои, закрученные в пространстве. При переходе от одного слоя к другому директор поворачивается на малый угол. Расстояние, между слоями, в которых направление директора совпадает, называют шагом спирали.

Помимо термотропных жидких кристаллов существуют лиотропные ЖК. Их получают растворением бифильных веществ в определенных растворителях. Что за бифильные вещества? Это вещества, молекулы которых которые совмещают в себе гидрофильные (растворимость в воде) и гидрофобные (нерастворимость в воде) свойства. Примером таких веществ являются высшие карбоновые кислоты.

C17H35COOH — стеариновая кислота (Автор: Jynto and Ben Mills — Derived from File:Caproic-acid-3D-balls.png., Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=11080927)

Карбоксильная группа -COOH является гидрофильной и может образовывать водородные связи с молекулами воды, благодаря наличию электроотрицательных атомов кислорода. Жирный углеводородный радикал -C17H35 является гидрофобной частью молекулы. Благодаря такому строению бифильные молекулы склонны образовывать мицеллы, растворы которых в определенных концентрациях могут проявлять свойства жидких кристаллов.

Жидкие кристаллы обладают рядом интереснейших свойств, о которых будет рассказано в дальнейших статьях. Подписывайся на эту ленту =)

Источник