Какими свойствами отличаются энантиомеры

Проблема многих студентов химии, изучающих стереохимию, возникает в различие между энантиомерами и диастереомерами. Это обычные молекулярные соединения с различными характеристиками, несмотря на то, что они представляют собой стереоизомеры — соединения с той же молекулярной и структурной формулой, но с различной ориентацией атомов. В этой статье мы расскажем о различии между этими двумя общими соединениями, чтобы просветить вас.
Во-первых, что такое стереохимия? Это исследование пространственного расположения атомов в соединении. Энантиомеры и диастереомеры являются частью стереоизомеров — той же структурной и молекулярной формулы с различным расположением атомов в каждой. Следует отметить, что стереоизомеры могут включать множество соединений, кроме энантиомеров и диастереомеров. Они могут включать конформеры и атропизомеры. В частности, мы фокусируемся на диастереомерах и энантиомерах.
Что такое энантиомеры?
Это хиральные молекулы, которые являются зеркальными изображениями друг друга и не являются наложенными друг на друга. Хиральная молекула имеет изображение, которое не совпадает с его зеркальным отображением, и оно обычно характеризуется углеродным центром с 4-мя различными атомами, связанными с ним. Эти атомы должны быть химически различимы для того, чтобы молекула квалифицировалась как хиральный и, следовательно, энантиомер. Тетраэдрический углерод, к которому присоединены различные атомы, называется стереоцентром. См. Разницу ниже между углеродом, который считается хиральным, а другой — не квалифицированным.
Рисунок 1: Иллюстрация хиральной и нехиральной молекулы [1]
Поскольку существует незначительная разница в пространственном расположении атомов молекул энантиомера, Кан-Ингольд-Прелог была создана система именования. Две молекулы имеют одинаковую формулу и структурирование атомов, поэтому для их идентификации мы должны обозначить один S и другой R, в зависимости от конфигурации атомов по часовой стрелке от самой низкой атомной массы до самой высокой атомной массы. Например, стереоцентр Углерод с бромом, хлором, фтором и водородом, прикрепленный соответственно по часовой стрелке, молекуле будет назначаться R, а если против часовой стрелки, молекуле будет присвоено значение S, поскольку бром имеет самую высокую атомную массу и водород — самый низкий.
Расположение этих атомов фактически помогает определить свойства молекулы. Рассмотрим структуры бромхлорфторметана ниже:
Очевидно, что ориентация водорода и фтора отличается от ориентации того же молекулярного соединения. Независимо от того, сколько раз вы можете вращать правую молекулу, она никогда не будет иметь такую же ориентацию, как левая молекула. Если, например, вы попытаетесь обменять Фтор и Водород вокруг, Бром и Хлор также изменят свои позиции. Это ясно объясняет концепции неперемещаемых и зеркальных изображений энантиомеров.
Для обозначения молекул хиральному (стереоцентру) присваивается буква S или R. Составляющие, таким образом, фтор, хлор, бром, помечены от высокой до низкой атомной массы, назначая 1, 2, 3. Бром является самым высоким, поэтому 1, Хлор 2 и Фтор 3. Если вращение составляет 1 — 3 по часовой стрелке, тогда хиральный центр обозначается R, если против часовой стрелки, то S. Таким образом, система Cahn-Ingold-Prelog работает с тем, чтобы отличить энантиомеры от каждого Другой. Это становится простым, когда мы работаем с одним хиральным центром с 4 уникальными заместителями, прикрепленными к нему. Энантиомер может иметь более 2 хиральных центров.
Молекулы энантиомеров различаются по пространственному расположению атомов, но обладают одинаковыми химическими и физическими свойствами. Тем не менее, они имеют те же точки плавления, точки кипения и многие другие свойства. Их межмолекулярные силы идентичны — это объясняет те же свойства. Но их оптические свойства различны, поскольку они вращают поляризованный свет в противоположных направлениях, хотя в равных количествах. Это различие в оптических свойствах отличает молекулы энантиомера.
Что такое диастереомеры?
Это стереоизомерные соединения с молекулами, которые не являются зеркальными изображениями друг друга и которые не являются наложенными друг на друга. Прекрасным примером диастереомеров является то, когда вы смотрите на структуры цис и транс-изомер. См. Цис-2-бутен и транс-2-бутен структуры ниже:
Соединения идентичны, но расположение отличается, и они не являются зеркальными изображениями друг друга. Когда CH3 находятся на одной стороне, соединение представляет собой цис и когда другой заменяется атомом водорода, назовем соединение сделка Но цис а также транс структуры не являются единственными примерами диастереомеров. Есть много таких молекул, пока они демонстрируют пространственные расположения атомов, которые не являются зеркальными изображениями друг друга, и которые не являются суммируемыми.
В отличие от энантиомеров диастереомеры обладают различными физическими и химическими свойствами. Диастереомеры имеют два стереоцентра, в которых другая молекулярная структура может имитировать конфигурации энантиомера, в то время как другая имеет одинаковую конфигурацию. Это то, что отличает их от энантиомеров, потому что эти структуры не могут быть зеркальными образами друг друга.
В приведенной ниже таблице будут выделены основные различия между энантиомерами и диастереомерами в двух словах:
Энантиомеры | Диастереомеры |
Они являются зеркальными изображениями друг друга и не являются наложенными друг на друга | Они не являются зеркальными изображениями друг друга и не являются наложенными друг на друга |
Их молекулярные структуры часто проектируются с R и S, чтобы отличить их. | Одна молекула имитирует энантиомерные структуры, тогда как другая имеет такую же конфигурацию. Поэтому нет необходимости использовать именование для их дифференциации. |
Обладать теми же химическими и физическими свойствами, но различными оптическими свойствами | Обладать различными химическими и физическими свойствами |
Имейте один или несколько стереоцентров | Имеют два стереоцентра |
Все энантиомеры обладают оптической активностью, хотя они вращают свет в противоположных направлениях. Те, которые вращают свет против часовой стрелки, известны как левовращающие, а те, вращающиеся по часовой стрелке, называются правовращающими. Но когда у другого есть одинаковое правовращательное и левовращательное количество вращения, он считается раскатной смесью и, следовательно, оптически неактивным. | Не все диастереомеры обладают оптической активностью |
Заворачивать!
Энантиомеры и диастереомеры представляют собой стереоизомеры с той же молекулярной и структурной формулой, но отличаются расположением / конфигурацией атомов, которые образуют их структуры. Мы видели, что молекулы энантиомера являются зеркальными изображениями друг друга, а диастереомеры не являются зеркальными изображениями. Обе молекулы не являются суммируемыми.
Энантиомеры обладают теми же химическими и физическими свойствами, но отличаются оптическими свойствами, поскольку некоторые вращают поляризованный свет в противоположных направлениях. С другой стороны, не все диастереомеры обладают оптической активностью.
Мы также видели, как именование структур энантиомеров разворачивается с помощью системы именования R и S, назначаемой на основе атомной массы заместителей, прикрепленных к хиральному центру. В диастереомерах только одна структура имеет конфигурацию R и S, в то время как другая имеет одинаковые конфигурации. Именно это отличает их от энантиомерных зеркальных изображений.
Изомеры – это вещества, имеющие одинаковый качественный и количественный состав, но разное строение, а поэтому – разные свойства. Изомеры делят на два типа – структурные и стереоизомеры.
Структурные изомеры имеют разное химическое строение (отличаются последовательностью соединения атомов в молекулах). Структурная изомерия обусловлена:
изомерией углеродного скелета:
изомерией положения кратных связей или функциональных групп:
межклассовой изомерией:
Разновидностью межклассовой изомерии является таутомерия. Таутомерия – подвижная динамическая изомерия, обусловленная переносом протона (или другой подвижной частицы) и сопровождающаяся миграцией двойной связи.
Стереоизомеры имеют одинаковое химическое строение, но отличаются расположением атомов или групп атомов в пространстве. Причиной различного пространственного расположения атомов и групп атомов в молекулах стереоизомеров являются отличия в конфигурации или конформации молекул.
Конфигурация – это определенное пространственное расположение атомов в молекуле без учета вращения вокруг одной или нескольких s-связей.
Конформация – это определенное пространственное расположение атомов в молекуле определенной конфигурации, обусловленное поворотом вокруг одной или нескольких s-связей.
И конфигурационные, и конформационные стереоизомеры делятся на энантиомеры (оптические изомеры) и диастереомеры (геометрические). Энантиомеры (оптические изомеры, оптические антиподы) – это стереоизомеры, соотносящиеся между собой как предмет и несовместимое с ним зеркальное отображение.
Оптическая изомерия характерна для молекул, не имеющих элементов симметрии – плоскости симметрии, центра симметрии, оси симметрии второго и высших порядков. Плоскость симметрии – воображаемая плоскость, делящая фигуру (молекулу) на две равные части. Ось симметрии – это проходящая через фигуру ось, при вращении вокруг которой на 360° фигура совмещается. Если при вращении вокруг оси симметрии на 360° происходит совмещение 1 раз, то говорят, что фигура имеет ось симметрии 1-го порядка, если два раза, – ось симметрии 2-го порядка и т.д. Центр симметрии – точка пересечения осей симметрии. Самой симметричной фигурой является шар, имеющий центр симметрии и бесчисленное множество плоскостей и осей симметрии. Самым асимметричным телом является рука.
Энантиомеры обладают практически одинаковыми физическими и химическими свойствами, но отличаются по оптической активности и реакционной способности в отношении хиральных реагентов. Диастереомеры – это стереоизомеры, не являющиеся зеркальными отображениями друг друга. Они обладают разными физическими и химическими свойствами.
Конфигурационные изомеры можно рассмотреть на примерах молекул бутанола-2 и бутена-2. Все атомы углерода в молекуле бутанола-2 находятся в тетраэдрической конфигурации (вследствие sр3-гибридизации атомных орбиталей углерода все четыре s-связи каждого атома углерода направлены к вершинам тетраэдра), однако заместители, связанные со вторым атомом углерода, могут по-разному располагаться в вершинах тетраэдра, что ведет к существованию для этой молекулы двух стереоизомеров. Стереоизомеры бутанола-2 соотносятся между собой как предмет и несовместимое с ним зеркальное отображение и являются энантиомерами.
В молекуле бутена-2 атомы углерода, образующие двойную связь, имеют тригональную конфигурацию (вследствие sр2-гибридизации атомных орбиталей углерода три s-связи расположены в одной плоскости под углом 120°, а негибридная р-орбиталь расположена перпендикулярно этой плоскости). Конфигурационные изомеры в этом примере возникают из-за разного расположения заместителей относительно двойной связи. Стереоизомеры бутена-2 не являются зеркальными отображениями друг друга и являются диастереомерами (p-диастереормерами).
Конформационные изомеры (конформеры) известны практически для любых органических соединений, в молекулах которых возможно вращение относительно связи углерод-углерод или углерод-гетероатом. Из приведенных ниже примеров видно, что такие стереоизомеры не являются зеркальными отображениями друг друга и поэтому являются диастереомерами.
Энергии различных конформаций неодинаковы, поэтому неодинакова и вероятность нахождения молекулы в той или иной конформации. Если затраты энергии для перехода из одной конформации в другую невелики, то соединение существует в виде равновесной смеси разных конформеров. Если одна конформация более выгодна энергетически, то молекула преимущественно существует в виде этого конформера (как правило, при низких температурах), в отдельных случаях конформеры можно выделить в индивидуальном виде.
Под оптической активностью понимают способность некоторых веществ вращать плоскость плоскополяризованного света по часовой стрелке или против часовой стрелки на одинаковый угол. Оптическая активность возникает в случае, когда молекула не может быть совмещена со своим зеркальным отображением.
Молекулы, которые не совместимы со своим зеркальным отображением, называются хиральными; те молекулы, которые можно совместить со своим зеркальным отображением, называются ахиральными. Хиральная молекула и ее зеркальное отображение – разные соединения, являющиеся стереоизомерами – энантиомерами (оптическими антиподами).
Хиральные молекулы не имеют плоскости симметрии, центра симметрии, оси симметрии 2-го и более высоких порядков. Простейший случай хиральной структуры – это «асимметрически замещенный атом углерода», т.е. атом углерода, связанный с четырьмя разными заместителями. Так, молекула бутанола-2 имеет асимметрический атом углерода (хиральный центр) и является хиральной, существует в виде двух энантиомеров.
Если в молекуле есть два одинаковых заместителя у одного атома углерода, как в молекуле пропанола-2, то в молекуле появляется плоскость симметрии, и такая молекула совместима со своим зеркальным отображением. В качестве хирального центра могут выступать и другие атомы – Si, N, Р. Наличие в молекуле асимметрически замещенного атома является необходимым, но не всегда достаточным условием для проявления хиральности. Главным условием является отсутствие в молекуле элементов симметрии, тогда хиральной может быть молекула, не имеющая хирального центра. Примером такой хиральной молекулы может служить пентадиен-2,3.
Метильные группы располагаются во взаимно перпендикулярных плоскостях, что делает молекулу пентадиена-2,3 асимметричной в целом. В то же время молекула пропадиена (аллен) имеет плоскость симметрии и поэтому является ахиральной. Хотя трехмерные формулы достаточно хорошо отражают структуру хиральных молекул, они неудобны и громоздки для отображения молекул, содержащих несколько хиральных центров. Для изображения энантиомеров на плоскости (для записи) используют проекционные формулы Фишера.
На плоскость проецируется тетраэдр, расположенный таким образом, чтобы вверху оказалась наиболее окисленная группа (СООН, СНО, SO3H и др.), а на горизонтальном ребре, повернутом к наблюдателю, располагались атом водорода и функциональная группа (ОН, NH2, Br, I, Fи др). Хиральный центр изображается на плоскости как пересечение вертикальной и горизонтальных линий. На горизонтальной линии располагаются заместители, направленные к наблюдателю (расположенные на горизонтальном ребре тетраэдра), а на вертикальной – заместители, удаленные от наблюдателя (находящиеся за плоскостью бумаги). Проекционные формулы Фишера для 2-аминопропановой кислоты и глицеринового альдегида имеют вид:
При использовании проекционных формул Фишера необходимо учитывать следующие правила:
— поворот проекционной формулы на 180° в плоскости бумаги не меняет стереохимического смысла;
— четное число перестановок заместителей у хирального центра не меняет стереохимического смысла;
— повороты проекционной формулы Фишера в плоскости бумаги на 90° или 270°, а также поворот на 180° с выводом из плоскости дают проекцию энантиомера, т.е. меняют стереохимический смысл на противоположный;
— нечетное число перестановок заместителей у хирального центра дает проекцию энантиомера, т.е. меняет стереохимический смысл на противоположный.
Определение истинного пространственного расположения атомов в молекуле, т.е. абсолютной конфигурации, стало возможным с использованием рентгеноструктурного анализа. В качестве конфигурационного стандарта был принят глицериновый альдегид. Правовращающий энантиомер глицеринового альдегида назвали D-(+)-глицериновый альдегид, левовращающий энантиомер назвали L-(-)-глицериновый альдегид.
В этих названиях символы D и L обозначают только конфигурацию и не имеют связи с оптическим вращением. Одно и то же соединение в зависимости от условий определения оптической активности может быть как правовращающим (+), так и левовращающим (-). Буквы D и L – символы стереохимической номенклатуры. К D-ряду относятся родственные глицериновому альдегиду соединения, в проекционных формулах Фишера которых функциональные группы, связанные с хиральным центром, расположены справа от вертикальной линии, к L-ряду – слева.
D- и L-глицериновый альдегид используется для определения конфигурации оптически активных молекул. Определение конфигурации проводят путем сравнения конфигурации исследуемой молекулы с абсолютной конфигурацией соединения, принятого за стандарт, т.е с конфигурацией D- или L- глицеринового альдегида. Сравнение конфигурации исследуемых соединений с конфигурационным стандартом (т.е. определение относительной конфигурации) проводят путем ряда химических превращений, не затрагивающих хиральный центр. Так, если нужно определить конфигурацию хирального центра оптически активной молекулы 2-гидрокси-3-хлорпропановой кислоты, можно поступить следующим образом:
Провести гидролиз исследуемого соединения до глицериновой кислоты:
В этом случае хиральный центр не участвует в реакции, его конфигурация не меняется.
Провести окисление D- и L- глицериновых альдегидов до соответствующих D- и L-глицериновых кислот:
В этих превращениях хиральные центры не участвуют в реакции, их конфигурация не меняется.
Сравнить оптическую активность (угол вращения и знак) глицериновой кислоты, полученной из исследуемого соединения, и оптическую активность D- и L–глицериновых кислот. Если оптическая активность глицериновой кислоты, полученной из исследуемого соединения, совпадает с оптической активностью D-глицериновой кислоты, полученной из D-глицеринового альдегида, значит, исследуемое соединение принадлежит к D- ряду. Если оптическая активность глицериновой кислоты, полученной из исследуемого соединения, совпадает с оптической активностью L-глицериновой кислоты, полученной из L-глицеринового альдегида, значит, исследуемое соединение принадлежит к L- ряду.
Хотя D/L система стереохимической номенклатуры используется часто, особенно в химии углеводов и аминокислот, Кан, Ингольд и Прелог предложили более универсальную R/S систему отнесения конфигурации оптических изомеров. Система основана на «старшинстве» заместителей. Заместители, расположенные в вершинах тетраэдра, получают номера от 1 до 4, 1 – самый старший.
Тетраэдр располагают таким образом, чтобы младший заместитель (обычно атом Н) был наиболее удаленным от наблюдателя. Если старшинство трех других заместителей, расположенных в основании тетраэдра, повернутого к наблюдателю, убывает по часовой стрелке, то такую конфигурацию обозначают буквой R, если старшинство заместителей убывает против часовой стрелки, тогда конфигурация хирального центра обозначается буквой S. Порядок старшинства определяется специальными правилами, которые здесь рассматриваться не будут.
Многие органические молекулы имеют в своем составе несколько хиральных центров, что приводит к увеличению количества стереоизомеров. Число стереоизомеров N можно найти по формуле N = 2n, где n – число хиральных центров в молекуле. В молекуле 2-бром-3-гидроксибутандиовой кислоты имеется два хиральных центра,
вследствие чего соединение имеет две пары энантиомеров, а общее число стереоизомеров равно 4. Соединение из первой пары энантиомеров по отношению к любому соединению из второй пары энантиомеров является диастереомером.
Понятия энантиомерии и диастереомерии взаимоисключающие, т.е. если два стереоизомера не являются энантиомерами друг по отношению к другу, то они диастереомеры. Принадлежность к D-,L-рядам стереохимической номенклатуры определяется с помощью «гидроксикислотного ключа», который учитывает конфигурацию ближайшего к карбоксильной группе хирального центра.
Известны соединения, в которых количество стереоизомеров на практике оказывается меньше рассчитанного из формулы N = 2n:
Для винной кислоты известны три стереоизомера: пара энантиомеров (D-винная и L-винная кислоты) и мезовинная кислота, не обладающая оптической активностью. Отсутствие оптической активности у мезовинной кислоты и невозможность ее существования в виде пары энантиомеров объясняется наличием в ее молекуле плоскости симметрии. Мезовинная кислота по отношению к D- или L-винным кислотам является диастереомером.
Смесь равных количеств энантиомеров называется рацематом. Рацемат оптической активностью не обладает. Оптическая активность будет проявляться лишь в случае, когда рацемическая смесь состоит из разных количеств энантиомеров. Для разделения рацематов на энатиомеры используют четыре способа: механический, биохимический (ферментативный), химический и адсорбционный.
Механический способ является исторически первым методом разделения энантиомеров. Он основан на разделении энантиомеров по форме кристаллов, образующихся при кристаллизации рацемата (энантиомеры кристаллизуются независимо друг от друга, их кристаллы являются зеркальными отображениями друг друга).
Ферментативный способ основан на том, что микроорганизмы могут потреблять один из энантиомеров. В этом случае теряется один из энантиомеров.
Химический способ основан на переводе энантиомеров под действием хирального реагента в смесь диастереомеров, имеющих существенные различия в физических и химических свойствах, и последующее их разделение.
Адсорбционный (хроматографический) метод основывается на:
— использовании различной адсорбционной способности диастереомеров, в этом случае их разделение возможно на обычных адсорбентах;
— непосредственном разделении энантиомеров на оптически активных адсорбентах.