Какими свойствами обладают жидкости
Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них – способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.
Общая характеристика
Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.
Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.
Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.
Рассмотрим основные свойства жидкостей.
Текучесть
От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.
Сохранение объема
Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении – уменьшается.
Вязкость
Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.
Свободная поверхность и поверхностное натяжение
Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.
Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.
Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.
Испарение и конденсация
Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.
Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.
Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.
Кипение
Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.
Смачивание
Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.
Смешиваемость
Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых – вода и масло.
Диффузия
Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.
Перегрев и переохлаждение
Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.
Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.
Волны на поверхности
Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.
Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.
Волны плотности
Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно – ударной.
Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.
Классификация
Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:
- Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
- Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
- Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
- Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
- Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.
Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.
С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.
Изучение
Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.
Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.
Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.
Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.
Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.
Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.
В заключение
Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет — ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.
Жидкость представляет одно из трех состояний, в которых существует материя. Большинство физиков выделяют также четвертое состояние материи — плазму. Жидкость (наряду с газом) является текучим состоянием материи, то есть при воздействии малых внешних сил она легко меняет свою форму, однако объем ее сохраняется постоянным при том же давлении и температуре. Ответ на вопрос о том, чем объясняется способность жидкостей сохранять свой объем, заключается в особенностях их строения.
Отличие жидкостей от твердых тел и газов
Молекулы, составляющие жидкости и газы, не находятся в постоянных положениях. Они могут свободно перемещаться по всему объему, что отличает эти два типа материи от твердых тел, в которых каждый атом или молекула занимают строго определенное место. Благодаря свободному перемещению молекул жидкость и газ приобретают форму того сосуда, в который их помещают. Поэтому при ответе на вопрос о том, какими свойствами обладают жидкости, следует в первую очередь называть их способность изменять свою форму.
Однако газы и жидкости имеют существенное отличие между собой. Например, газы не сохраняют объем и способны заполнять его полностью в том пространстве, которое им предоставлено. Жидкости, в свою очередь, объем сохраняют. Чем объясняется способность жидкостей сохранять свой объем?
Вся разница между тремя состояниями материи заключается в величине сил, которые связывают молекулы и атомы. В твердых телах эти силы велики, поэтому каждая частица твердого вещества сохраняет свое положение. В жидкостях эти силы слабее, поэтому они и позволяют свободно перемещаться молекулам по всему их объему. Однако эти силы намного больше таковых для газов, в которых в ряде случаев можно пренебречь их существованием.
Какими свойствами обладают жидкости?
Жидкость, как и газ, относится к текучим телам, то есть к такому состоянию вещества, действие минимальной внешней силы на которое вызывает пространственное смещение его отдельных молекул и целых слоев относительно друг друга. Если говорить только о строении и свойствах жидкостей, то нужно назвать следующие их основные физические характеристики:
- вязкость;
- поверхностное натяжение;
- когезия и адгезия;
- капиллярность;
- плотность;
- гидростатическое давление.
Понятие вязкости
Вязкость является физической величиной, которая определяет способность жидкости сопротивляться любому смещению в ее объеме. Несмотря на то что жидкость является текучей материей, при воздействии внешней силы, которая стремится сместить молекулы жидкости, в ней появляются внутренние силы, которые препятствуют такому смещению. Эти внутренние силы называются когезионными. Они отвечают не только за существование вязкости, но и являются ответом на поставленный вопрос. Чем и объясняется способность жидкостей сохранять свой объем.
Если бы жидкость не обладала вязкостью, то она могла бы течь по любой трубе под действием собственной инерции, и не нужно было бы прикладывать разницу давлений на концах этой трубы, чтобы привести жидкость в движение.
Вязкость таких веществ зависит от температуры обратно пропорционально, то есть с ее увеличением вязкость уменьшается. Эта зависимость связана с ослаблением межмолекулярных сил при увеличении температуры жидкостей. Например, вода при температуре 0 ºC имеет вязкость 0,0018 Па*с, а при 60 ºC — уже 0,00065 Па*с.
Поверхностное натяжение
Говоря о поверхностных свойствах жидкости, в первую очередь следует назвать поверхностное натяжение. Суть этой физической величины заключается в том, что свободная поверхность вещества проявляет свойства тонкой эластичной мембраны. Подобный феномен связан с наличием сил притяжения между молекулами жидкости.
Силы притяжения, которые действуют на каждую молекулу в толще вещества, направлены во все стороны, поэтому они компенсируют друг друга. Результирующая сил притяжения, воздействующая на поверхностные молекулы жидкости, направлена внутрь жидкости. Иными словами, перпендикулярно ее поверхности. Именно эта сила ответственна за образование поверхностного натяжения.
Благодаря силам поверхностного натяжения жидкость всегда стремится принять форму, отвечающую наименьшей площади поверхности при таком объеме. Такой формой является шар. Именно поэтому капли воды в невесомости имеют форму шара. Поверхностное натяжение уменьшается с увеличением температуры ввиду уменьшения когезионных сил между молекулами жидкости.
Когезия, адгезия и капиллярность
Когезия — свойство молекул одной и той же жидкости притягиваться друг к другу. Силы, действующие в результате когезии, называются когезионными. Благодаря этим силам молекулы жидкости стремятся собраться вместе. Явление когезии отвечает на вопрос о том, чем объясняется способность жидкостей сохранять свой объем. Для газов когезионные силы можно считать равными нулю, поэтому они занимают любой предоставленный им объем.
Адгезия — способность жидкости и твердого тела притягиваться друг к другу. Такие ситуации возникают часто, когда жидкость наливают в сосуд или разливают по поверхности. Она вступает в контакт с твердым телом. Величина адгезионной силы зависит от свойств конкретной жидкости и твердого тела.
Когезия и адгезия являются конкурирующими свойствами в физике жидкостей. Так, если когезионная сила больше адгезионной, тогда такое вещество не смачивает поверхность твердого тела, и наоборот, если адгезия проявляется сильнее, чем когезия, тогда говорят о явлении смачиваемости.
С явлениями адгезии и когезии также связано такое свойство жидкостей, как капиллярность, то есть способность жидкостей подниматься или опускаться в тонких трубках на высоту, отличную от общего уровня жидкости. Толщина трубок должна быть около 1 мм, чтобы явление капиллярности было заметным.
Плотность жидкости
Данное свойство характерно для любого состояния материи и определяется как количество этой материи или ее масса, содержащаяся в единице объема. Учитывая, что с увеличением температуры многие тела расширяются, их плотность уменьшается. Однако для некоторых веществ это правило может не действовать в определенных интервалах температур. Так, вода при 0 ºC имеет меньшую плотность, чем при 4 ºC.
Плотность, согласно ее определению, равна: ρ = m / V, отсюда можно определить, чему равен объем жидкости или чему равна ее масса, если знать две другие величины. Например, вода при 4 ºC массой 1 кг занимает объем V = m / ρ = 0,001 м3 = 1 л.
Гидростатическое давление
Под гидростатическим давлением понимают давление, которое оказывает жидкость на погруженное в нее тело ввиду наличия собственного веса у жидкости. Это давление увеличивается с глубиной линейно. Гидростатическое давление действует во всех направлениях одинаково. Помимо глубины, оно зависит еще от плотности жидкости. Наличие этого свойства обуславливает существование выталкивающей силы, открытой Архимедом.
Отметим, что молекулы жидкости расположены достаточно близко друг к другу, кроме того, при незначительном их сближении возникают большие отталкивающие силы, поэтому увеличение внешнего давления в широких пределах практически не изменяет плотности жидкости. Этот факт является ответом на вопрос о том, чем объясняется способность жидкостей сохранять свой объем и не сжиматься в значительном интервале внешних давлений.